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Abstract

The logistic regression model is used to predict a binary response variable in terms of a set of explicative ones. In the
presence of multicollinearity among predictor, the estimation of the model parameters is not very accurate and their
interpretation in terms of odds ratios may be inaccurate. Another important problem is that usually a large number of
predictors are required to explain the response. In order to improve the estimation of the logistic model parameters
under multicollinearity and to reduce the dimensions of the data with continuous covariates, it is proposed to use as
covariates of the logistic model a reduced set of optimum independent components of the original predictors. Breast
cancer data is used as real data set. The performance of the proposed independent component logistic regression model
is analyzed by developing a simulation study where different methods for selecting the optimum independent
components are compared. We built up a simulation study to illustrate the performance of the model with different
regressors, sample size, and correlation among the regressors. Independent component logistic regression compared
with principal component logistic regression model and independent component logistic regression gives better results.
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1. Introduction

It is essential to predict a binary response variable in various fields of study, for example,
medication and the study of disease transmission or comparably the likelihood of occurring of an
event achievement, regarding the estimations of a lot of explicatory factors identified with it. The
Logistic Regression (LR) serves perfectly and is the most utilized for various cases as should be
obvious for instance in Prentice and Pyke (1979). As many authors stated that (Hosmer and
Lemeshow, 1989, Ryan, 1997) among others, the Logistic Model (LM) becomes unbalanced when
predictors are highly correlated among themselves, so it seems that no one variable is important
when all the others are in the model. In this case the estimation of the parameters of the model
computed by R-software. As a result, the interpretation of the relationship between the response
and each explanatory variable in terms of odds ratios may be invalid. Dependent variable is
dichotomous and binary in LR, i.e., data coded values are utilized as in tumor case 1 is utilized for
dangerous or 0 is utilized for not. At the point when the dependent variable is dichotomous then
LR is the suitable regression examination to lead. In LR model predictor variables are highly
correlated then there is multicollinearity. During the estimation of linear or generalized linear
model including LR and Cox regression, multicollinearity is a common problem. To detect
multicollinearity correlation matrix may be helpful but not sufficient in LR. If the model satisfies
the logistic assumptions, then the analysis is valid and if the model does not satisfy the logistic
assumption, then there is some problem in the model. For the LR coefficients there are biased
coefficient estimates or large standard errors may present due to multicollinearity and invalid
statistical inferences are produced. By using the model for any statistical inference, watch that
model fits adequately well. When the model includes multiple factors that are correlated not just
to response variable but also with each other then it refers multicollinearity in LR. In LR model
predictor variables are highly correlated then there is multicollinearity. If we have a huge number
of variables, then there exist a high dimensional issue and it can be resolve by reducing the number
of variables. The number of variables can be reduced using dimension reduction techniques like
Principal Component Analysis (PCA) or Independent Component Analysis (ICA).

2. Objective of the Study

The main objectives of the research are to overcome the problem of multicollinearity among the
explanatory variables in LR model. Propose a new method to overcome the problem of
multicollinearity by using a relatively new Blind Source Separation (BSS) technique Independent
Components Analysis (ICA) and compare the proposed technique with Principal Components
Logistic Regression (PCLR).

3. Organized of the paper

The current study is organized as section wise in section 4 discussed the literature Review, in
section 5 discussed advantages and dis-advantages of the proposed study. In section 6 define a
basic theory on logistic regression. In section 7 discussed independent component logistic
regression (ICLR) Model and in section 8 detailed Handling Multicollinearity using ICLR. In
section 9 define an Application of the Proposed ICLR Model and last section 10 conclusion.

4. Literature Review

Schaefer et al. (1984) proposed a ridge logistic estimator. Cessie , Houwelingen (1992) designed
ridge estimators in LR. It is shown how ridge estimators can be used in LR to improve the
parameter estimates and to diminish the error made by further predictions. Steyerberg et al. (2001)
analyzed a case study in which application of shrinkage methods in LR analysis was explained.
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Hubert and Wijekoon (2006) showed the improvement of the Liu estimator in linear regression
model. Mansson and Shukur (2011) make research in LR on ridge parameters. This paper applies
and explores various Logistic Ridge Regression (LRR) parameters that were observable by
utilizing the method of ML. Bastien et al. (2005) determined about the PLS generalized linear
regression. Aguilera et al. (2007) discussed the useful PLS logit regression model. Aguilera et al.
(2006) determined that what could be done by utilizing PCs for calculating LR with high-
dimensional multicollinear data. Escabias et al. (2004) described the PC estimation of functional
LR and discussed two different approaches. Over the last few years many methods have been
developed for analyzing functional data with different objectives. Aguilera et al. (2005) explained
about the modeling environmental data by functional PCLR. Morillo et al. (2013) examined for
functional logit regression the penalized spline approaches. Zhou et al. (2014) investigated that the
face recognition depends on PCA and LR analysis. Agyekum et al. (2023) determined about the
impact of sample size on multicollinearity with high dimensional data in LR analysis.

5. Advantages and Dis-advantages of the Proposed Study

In logistic regression model there is multicollinearity among predictors. Due to the
multicollinearity the estimation of the model parameters is not very accurate. The major advantage
of the proposed study is to reduce multicollinearity and also independent component analysis helps
to reduce dependence among predictors and gives better results.

6. Basic theory on logistic regression

We formulate the model to establish the theoretical framework about LR by estimating its
parameters and testing its goodness of fit. A best fitted model is found by the LR that is utilized to
clarify the connection between one dependent binary factor and at least one nominal, ordinal,
interval or ratio level independent factors and that is the fundamental objective of LR. LR model
is given as below,

Yi =m;+ & izl, 2,...,1’1 (1)

Ygiven (X1 = xi1, X2 = xj2, ..., Xp = x;3) s the expectation of 7; that can be modelized as

_ _ _ _ _ exp{B0+Z§'=1 xijﬁj}
m=P{Y = 1|X; = x4, 0, Xp = Xy} = Trexp (B3] 1)

)
Where parameters of the model are j,, B4, ..., B, and variances of & are
Var|[€l=m(1—m;) ,i=1,..,n

Coefficients of a method to predict a logit change of the probability of occurrence of the qualities
of concern are created by the LR, which is as follows,

Loglt(p) == bO + b1X1 + b2X2 + -+ prp

Probability of occurrence of qualities of interest is p and logit transformation are written in terms
of logged odds,
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Probability of presence of characteristics of interest

0dds = (——) =
1-p Probability of absence of characteristics of interest

and

p
1-p

logit(p) = In( )

As link function a Generalized Linear Model (GLM) with logit transformation can be expressed
as LR. To return a probability value LR converts its output using the logistic sigmoid function.
Dependent variable structure, perception independence, non-appearance of multicollinearity,
linearity of autonomous factors and log odds, and enormous sample size are the assumptions of
LR.

The mostly used for the estimation of LR is maximum likelihood. Let L(Z: ) be the likelihood
specified by

: 1—z;
L(Z:B) = 7;171].21(1 —m) (3)

In multicollinearity maximum likelihood does not give accurate results. Firstly, an indicator of
multicollinearity in LR is selected. The pairwise correlations and VIF may be utilized when the
regressors are all continuous and if various predictors are not continuous then the problem of
multicollinearity will be increased. Multicollinearity is a problem that exists when variables are
highly correlated to each other, and it can be detected easily by displaying the correlation matrix
of continuous independent factors. In regression analysis model, overfitting is the main danger that
occurs due to data redundancy. The best reversion models are those in which the predictor factors
each associate exceedingly with the dependent result variable however connect all things
considered just insignificantly with one another.

7. Independent component Logistic Regression (ICLR) Model

Firstly, we describe the ICA of a set of variables and its properties. Secondly, we will formulate
the ICLR model then describe the simulation scheme and use different methods to select the IC’s
explanatory variables in the ICLR model.

7.1. Independent component analysis (ICA)

A statistical latent variables model can be used to thoroughly describe ICA. Suppose that we
examine r random variables x;;, x,¢..., X+ and these are modeled as linear combination of m
random variabless,;, Sy¢, ..., SmeWhereas m < r, after that

xl't = Wl'lslt + WizSZt + -+ Wl'mSmt, l == 1,2, v,

Whereas some real coefficients are wy (i =1,2,..,randj = 1,2,...,m). non-Gaussian
distributed components and statistically mutually independent components are s;; which are
described by definition. This is the general ICA model.

Once the model has been estimated then its goodness of fit must be tested.

Let M,,denotes the specific logit model which is obtained by equating zero certain number [ of
parameters, f4, ..., B;selected among the p + 1 ones of model M. The likelihood statistic for the
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comparison of the model M,to model Mtests the hypothesis that all parameters in model Mbut not
in model M,equal to zero. Then the conditional likelihood-ratio statistics for testing model M,

given that M holds, is given by the difference in the G? goodness-of-fit statistics for the two
models to be compared and is given as:

G2(Mp/M) = 2(fu — fu,) = G*(Mp) — G*(M) )

For the simpler model M, the [y, being the maximum log-likelihood that removes those !
parameters. With df eqvivalent to the difference among the residual df for the two compared
models in the fitted model M the number [ of parameters equivalent to zero, it is a huge sampled
statistic of chi-square.

7.2. ICLR Model Formulation

To characterize the model of ICLR we will prepare the logit model in words of all the IC’s related
to the observations of matrix X which are the continuous predictor variables. With no loss of
simplification, we will assume that the regressors are centered. In terms of all the IC’s the success
probabilities of the logit model can be articulated as

_exp(Bo+Ei_y Biisy ZkVikB)  _ exp{Bo+3h, zuvid)
1+exp(Bo+X)_; Xpoy ZikVikBj}  1+exp{Bo+Ei_, ZikVk}

TT;

Being the elements of the IC’s matrix L=XV and y;, = 25';1 VieBj k= 1,...,p with z;, , (i=1,...,n;
k=1,....,p). In terms of the logit transformation the logistic model can be equally determined in
matrix form and the IC’s as

L=XB=2V'8 =2y, (5)
Wherever
Z=@|L) (ﬂﬁ) 0=1(0,.,0),1=(1,..1).

Thus, as described in the sense of those of the model that contains as covariates all the IC’s the
parameters of the logit model can be attained. 8 = Vy. We have the prediction equation Y = #,

B=vyp (6)
as a result of the invariance property of ML estimates.

In the case of collinearity to advance the original parameters estimation we will introduce the ICLR
model. As covariates of the logit model by taking a reduced set of IC’s of the original predictors
the ICLR model is obtained.
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Z and V Split matrices are given below

1 le oo le le+1 e le
1 VA cen VA Z2 +1 cee Z2 _
1 Zp1  Zps|Zps+1 0 Zmp
and

/1 0 .. 01 O e 0

0 Vll vlS v15+1 vlp
V=] 0 Va1 7 Vas|Vaser - Vap [= (V(5)|V(r)).
\0 Vpl ces Vps VpS'I-l ces Vpp

ThenZ ) = XV and Z,y = XV(;», thus the original parameters can be articulated as
B=Vy =ViYe +VinYe)

Wherever

V’(r))"

v =(ror = ¥lyrsea 1) = (V'

In terms of all the ICs the logit model given by Eq. (3.11), can be expressed as

L =2y = ZV(s) t ZY ) the ICLR model as far as s ICs (ICLR) is acquired by removing the
r last ICs in the last equation, so we had

Vi = Tis) + Ei(s)
Wherever

S exp{Yo+Xi=1 Zij¥;}
£S) ™ 1+expio +X5, ZijY Y

1=1,...,n.

In matrix form as far as the vector of logit conversion L¢sy = (Ly(s), -, Incs)) this model can be

equivalently formulated with components /s, = In <ni(s)/(1 - )> as given:
- tigs)

Ly = ZY(s) = XVi9)Y(s) = XBs).

As a result, a renovation of the original parameters has acquired known byp ) = V(¥ (s), as far
as the ICLR model’s parameters that has as covariates the first s ICs. An estimation of the original
parameters B will be given by the ML estimation of this ICLR model which is described as

293



By = VisyPs), (7)

That will recover thef estimation attained by means of original variables if there should be an
occurrence of multicollinearity. In the last one the estimator ¥, as far as the first s ICs are not the

vector of the initial s components of the estimator  as far as all the I1Cs that is the main variation
among ICR and ICLR. Such as, 75y = (Pocs) Pisys = Pscs)) # For Pas o, Bs)". As a result the
ICLR(s) model estimated the probabilities 7;are diverse to the ones acquired in abbreviating the
model’s ML estimated probabilities that has all the ICs as regressors. This is,

exp{Pocs) + Xj=1ZijTjs)} exp{Vo + Xj=12i7;}
1+ exp{fo) + 251270} 1+ exp{fo + X, 27}

Tis) =

In computational exertion this implies an impressive extension because each time the model of
ICLR has to be straightened out we remove or enter a innovative PC in the model.

7.3. Model Selection

In turn to attain best probable estimation of logit model parameters, for choosing the most
favorable ICLR model we will utilize different criteria that was used by (Aguilera et al. (2006))
depends on various accuracy evaluations of the estimated parameters.

e Firstly, the Mean Squared Error of the Beta parameter vector (MSEB) is determined

14
1 A 2
MSEB(S) = mZ(ﬁ](s) - ﬁ]) , S = 1, e, P-
j=0

e Secondly, the maximum of the absolute differences of the beta parameters is defined as

Maxsy = Maxi{|Bji) = Bil}s = 1, ... p.

However, the best estimation of the model probabilities is provided by the best estimation of the
original parameters can be imagined.

Let us check that better estimation of the parameters will be indicated by the undersized values of
mean squared error (MSE) and Max (Maximum). Latterly in the simulation study we will choose
the optimum model with the smallest MSE and Max.

When the real data is analyzing by us at that time the estimated and real parameter’s comparison
is not possible, then we could not compute the MSE and Max and another measure of accuracy of
the estimation is needed to be defined that does not consider the real unknown parameters. A
number of authors, Aucott et al. (2000), among others, noted that in the linear regression to a bad
estimation the variance of estimated parameters is very responsive.

8. Handling Multicollinearity Using ICLR

This section presents the application of the proposed ICLR model to tackle the problem of
multicollinearity. A comparison of ICLR with Principal Component Logistic Regression Model
(PCLR) (Aguilera, 2006) is also made.
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8.1. The Simulation Scheme

We built up a simulation study to illustrate the performance of the proposed ICLR model and to
demonstrate how the estimation of logit model parameters with collinear regressors can be
improved by utilizing ICs.

The simulation design is carried out by choosing:

e Three different number of regressorsi.e. P = 6,10, and 15
e Three different sample sizes i.e. n = 100,200 and 300
e Three different levels of correlation among the regressors i.e. p = 0.8,0.9 and 0.95

In this way we obtain nine different tables each with above stated three different correlation levels
and overall, twenty-seven sets of tables from one data set.

The cholesky decomposition method is applied to obtain P regressors with a known correlation
structure. The P variables are generated as regressors from multivariate normal distribution with a
specific correlation level.

As a second step, a vector of real parameters S is fixed. The vector of real parameters S is chosen
as normalized eigen vectors corresponding to the largest eigen values of XX so that Btp is equal
to one following Newhouse and Oman (1971).

The binary response was simulated by pursuing the plan of the simulation studies created in
conducted by Hosmer et al. (1997) and Pulkstenis and Robinson (2002). The real probabilities are
computed by the model:

. exp(x'iB)
T 1+exp(xiB)’

At last, with parameter r;, y; - B(m;)(i = 1, ...,n) from a Bernouilli distribution each sample
value of the binary response was simulated.

9. Application of the Proposed ICLR Model

For three distinctive numbers of regressors(P = 6,10 and 15), three diverse sample sizes (n =
100,200 and 300), three different correlations p = 0.8,0.9 and 0.95 and one unique
distribution of the collinear regressors is used. According to this method 27 tables are given below
and these are divided in different cases according to the number of regressors, sample sizes and
correlation and each case contain 9 tables. Data set 1 contains three cases for p = 0.8, P = 6 and
sample size is changed for every case and three cases for p = 0.8, P = 10 and sample sizes are
(n = 100,200 and 300) for case 1, 2 and 3 and three cases for p = 0.8, P = 15. Data set 2
contains three cases for p = 0.9, P = 6 and sample size is changed for every case and three cases
for p = 0.9, P = 10 and sample sizesare (n = 100, 200 and 300) for every case and three cases
forp = 0.9,P = 15. Data set 3 contains three cases for p = 0.95,P = 6 and sample size is
changed for every case and three cases for p = 0.95,P = 10 and sample sizes are (n =
100,200 and 300) for every case and three cases forp = 0.95, P = 15. All of these are given
below.

=1,..,n,
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9.1. Analysis of Datasets with p = 0.8 Real and Estimated Parameters with MSE and Max
Table 1: For Case 1, p = 0.8,P = 6,n = 100

Parameters Real PCLR(AIl) PCLR(3) ICLR(AI) ICLR(3)
b1 0.4015 4.9827 0.9217 4.1090 0.2200
B> 0.3216 10.1327 1.3316 6.3915 0.6916
B3 0.5298 8.8181 0.9896 2.1919 0.9818
Ba 0.3389 9.2987 0.6984 3.2512 0.6184
Bs 0.5016 9.9984 1.1995 3.3214 0.7715
Be 0.2929 3.2198 1.6719 3.2898 0.9898
MSE 60.8292 0.6700 13.1277 0.1685
Max 9.8111 1.3790 6.0699 0.6969
Table 2: For Case 1, p = 0.8,P = 6,n = 200
Parameters Real PCLR(AII) PCLR(3) ICLR(AII) ICLR(3)
B1 0.4718 9.3129 0.9138 5.1423 0.9616
B> 0.5125 7.6814 0.9917 4.1193 0.7719
B3 0.3018 10.9815 1.2319 3.8716 0.9823
B4 0.2917 9.8917 0.9813 2.2219 0.2126
Bs 0.4104 3.2419 0.9919 5.1910 0.5139
Be 0.4010 1.1286 0.9796 6.1010 0.5524
MSE 57.3868 0.4064 17.7726 0.1350
Max 10.6797 0.9301 5.7000 0.6805
Table 3: For Case 1, p = 0.8,P = 6,n = 300

Parameters Real PCLR(AI) PCLR(3) ICLR(AI) ICLR(3)
B 0.5612 7.1761 0.8167 3.2145 0.7682
B> 0.5013 6.5519 1.2219 2.2281 0.5903
Bs 0.3391 5.2317 0.6719 1.6314 0.9384
B 0.3418 6.6692 0.8517 5.7123 0.4615
Bs 0.3916 6.0915 0.9819 6.2649 0.5109
Be 0.2116 6.6616 1.0012 4.7164 0.9348
MSE 36.4053 0.3212 15.8872 0.1602
Max 6.6149 0.7896 5.8733 0.7232
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In table 1-3, the first three PCs account for the 95% variation, so we include three PCs as reduced
number of variables to construct PCLR and three ICs for the construction of ICLR. The original
parameters are then reconstructed, and the estimates of the parameters are obtained. The MSE of
the estimated parameters and the value of Max show the better performance of ICLR as compared
to PCLR. The values of MSE and Max are minimum for ICLR (3). ICLR(all) also performed better
than PCLR(all). If we make an overall comparison, then after ICLR (3) the PCLR (3) is on second
number. It can be observed that the values of the estimated parameters f are mostly very different
to the real ones. Such inaccurate estimation must be the result of multicollinearity. These bad
estimation results lead to a misleading interpretation of the parameters in terms of odds ratios.

Table 4: For Case 2,p = 0.8,P = 10,n = 100

Parameters Real PCLR(AII) PCLR(6) ICLR(AII) ICLR(6)
B1 0.3319 6.7182 1.0416 4.0112 0.6015
B> 0.3337 6.6228 0.9987 6.1317 0.6689
B3 0.3093 8.1723 0.9983 4.3219 0.7314
B 0.3003 7.6193 1.1219 6.1215 0.9889
Bs 0.3321 5.9950 0.8018 2.1109 0.7889
Be 0.3301 4.0021 0.5989 1.0001 0.9615
B~ 0.2986 6.1716 1.0019 2.1225 0.4212
Bs 0.3017 8.1313 0.8787 3.7123 0.8916
Bo 0.3287 49817 0.9714 2.9990 0.8204
B1o 0.2988 11.2319 1.5218 5.0014 0.7105
MSE 47.8262 0.5125 14.4958 0.2219
Max 10.9331 1.2230 5.8212 0.6886
Table 5: For Case 2, p = 0.8,P = 10,n = 200
Parameters Real PCLR(AI) PCLR(6) ICLR(AI) ICLR(6)
B 0.3319 6.7182 1.0416 4.0112 0.6015
B> 0.3337 6.6228 0.9987 6.1317 0.6689
Bs 0.3093 8.1723 0.9983 4.3219 0.7314
B4 0.3003 7.6193 1.1219 6.1215 0.9889
Bs 0.3321 5.9950 0.8018 2.1109 0.7889
B 0.3301 4.0021 0.5989 1.0001 0.9615
B~ 0.2986 6.1716 1.0019 2.1225 0.4212
Bs 0.3017 8.1313 0.8787 3.7123 0.8916
Bo 0.3287 4.9817 0.9714 2.9990 0.8204
B1o 0.2988 11.2319 1.5218 5.0014 0.7105
MSE 47.8262 0.5125 14.4958 0.2219
Max 10.9331 1.2230 5.8212 0.6886
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Table 6: For Case 2, p = 0.8,P = 10,n = 300

Parameters Real PCLR(AII) PCLR(6) ICLR(AIl) ICLR(6)
B1 0.3163 3.3215 1.5416 3.3218 1.5416
B> 0.3169 8.7182 1.1912 5.2989 0.1912
Bs 0.3155 12.2343 0.8399 4.3213 0.3521
B4 0.3161 7.2362 0.9987 7.2143 0.5361
Bs 0.3159 3.3312 1.0023 3.0012 0.6313
B 0.3317 2.2314 0.9876 1.6984 0.4198
B~ 0.3146 -7.1562 1.2110 2.3245 0.0141
Bs 0.3174 4.5798 0.9632 5.2342 0.4965
Bo 0.3163 1.1432 1.3621 1.1172 0.3621
B1o 0.3022 6.1993 0.9875 4.3216 0.2990
MSE 39.1700 0.6692 15.1575 0.1799
Max 11.9188 1.2253 6.8982 1.2253

In table 4-6, the first six PCs account for the 95% variation, so we include six PCs as reduced
number of variables to construct PCLR and six ICs for the construction of ICLR. The original
parameters are then reconstructed, and the estimates of the parameters are obtained. The MSE of
the estimated parameters and the value of Max show the better performance of ICLR as compared
to PCLR. The values of MSE and Max are minimum for ICLR (6). ICLR(all) also performed better
than PCLR(all). If we make an overall comparison, then after ICLR (6) the PCLR (6) is on second
number. It can be observed that the values of the estimated parameters f are mostly very different
to the real ones. Such inaccurate estimation must be the result of multicollinearity. These bad
estimation results lead to a misleading interpretation of the parameters in terms of odds ratios.
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Table 7: For Case 3, p = 0.8,P = 15,n = 100

Parameters Real PCLR(AIl) PCLR(7) ICLR(AII) ICLR(7)
B1 0.5056 5.1393 1.5183 5.8012 0.7214
B2 0.1917 5.3482 0.5673 2.8713 0.2120
Bs 0.2278 8.1573 0.9884 4.9953 0.9186
B4 0.1916 4.7416 0.9926 3.2638 0.4321
Bs 0.1853 10.9817 0.8091 5.1162 0.8726
Be 0.2019 10.5413 1.5152 6.4381 0.6361
B 0.1613 6.7682 0.9633 5.0067 0.6328
Bs 0.2290 9.8917 0.8744 3.4719 0.4719
Bo 0.2020 10.5618 1.0900 2.2754 0.6819
Bio 0.5109 10.2323 1.9989 3.626 0.8969
Bi1 0.1198 5.9319 1.7109 3.3384 0.6727
Bi2 0.3257 8.1919 1.1372 2.7189 0.7295
Bis 0.1119 5.1099 0.9925 4,1018 0.3894
Bia 0.1010 4.2972 0.9719 2.1261 0.4190
Bis 0.1910 3.2905 0.3198 2.4502 0.5718
MSE - 56.1205 0.8869 14.6535 0.1796
Max 10.7964 1.5911 6.2362 0.6908
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Table 8: For Case 3, p = 0.8,P = 15,n = 200

Parameters Real PCLR(AII) PCLR(5) ICLR(AII) ICLR(5)
B1 0.3994 5.9827 0.9633 2.8713 0.8743
B> 0.3897 11.0725 0.8744 4.9953 0.8863
B3 0.3128 6.6719 0.6109 3.2638 0.9104
B 0.2118 6.6713 0.9989 5.1162 0.8927
Bs 0.1978 9.1984 1.7109 6.4381 0.6382
Be 0.1995 5.1875 0.5372 6.1473 0.4426
B 0.1165 7.7727 0.3198 5.4534 0.3172
Bs 0.1319 9.1973 1.5926 7.1209 0.8172
Bo 0.4258 5.1393 0.8091 2.2122 0.1128
B1o 0.3162 5.3482 0.7152 3.6260 0.7476
B11 0.1101 8.1573 0.9884 3.3384 0.3109
B2 0.2752 4.7416 0.9926 2.7189 0.5319
B3 0.1190 8.1703 0.8091 4.1018 0.3381
Bia 0.2277 6.3281 0.5152 2.1261 0.8656
Bis 0.1017 6.1762 0.9730 2.4502 0.6393
MSE 49.6887 0.5833 17.8167 0.2126
Max 10.6828 15131 6.9890 0.6853
Table 9: For Case 3, p = 0.8,P = 15,n = 300
Parameters Real PCLR(AII) PCLR(5) ICLR(AII) ICLR(5)
b1 0.4024 5.9319 1.8091 5.7365 0.7295
B> 0.3105 8.1919 0.7152 3.2128 0.3894
B3 0.1298 4.1799 0.6633 3.2712 0.4190
B4 0.3107 3.2272 0.8744 3.9838 0.5718
Bs 0.3039 11.2905 1.2048 4.1328 0.8743
Be 0.2198 7.6514 0.9642 5.8012 0.8863
By 0.3987 6.2048 0.9730 2.8713 0.9104
B 0.2119 7.8182 0.9782 4.9953 0.8927
Bo 0.1001 5.9801 1.5183 3.2638 0.6382
Bio 0.1891 9.9754 0.5673 5.1162 0.4426
P11 0.2278 8.1573 0.9884 6.4381 0.5319
P12 0.2916 4.7416 0.9926 5.0067 0.3381
P13 0.1853 8.1703 0.8091 3.4719 0.8656
P1a 0.2019 6.3281 1.5152 2.2754 0.6393
Bis 0.1613 6.1762 0.7752 3.6260 0.3261
MSE 49.0397 0.7161 17.1489 0.1926
Max 10.9866 1.4182 6.2103 0.6808
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In table 7, we compare first seven PCs with ICs as well as in Table 8 and 9 we deal with first five
PCs and ICs. The first seven and five PCs account for the 95% variation, so we include seven as
well as five PCs as reduced number of variables to construct PCLR and seven as well as five ICs
for the construction of ICLR. The original parameters are then reconstructed and the estimates of
the parameters are obtained. The MSE of the estimated parameters and the value of Max show the
better performance of ICLR as compared to PCLR. The values of MSE and Max are minimum for
ICLR (5,7). ICLR(all) also performed better than PCLR(all). If we make an overall comparison,
then after ICLR (5,7) the PCLR (5,7) is on second number. It can be observed that the values of
the estimated parameters 3 are mostly very different to the real ones. Such inaccurate estimation
must be the result of multicollinearity. These bad estimation results lead to a misleading
interpretation of the parameters in terms of odds ratios.

Table 10: The value of G2?and p-value (parentheses) with correlation 0.8 for ICLR(s) and PCLR(s)

Model
P=6 P=10 P=15
Method n=100 n=200 n=300 n=100 n=200 n=300 n=100 n=200 n=300
PCLR (3) 76.8 8121 7723 ---
(0.87) (0.81) (0.87)
ICLR (3) 82.13 88,58 84.14 ---
(0.80) (0.74) (0.79)
PCLR (5) 734 - 73.18 62.13
(0.88) (0.88) (0.97)
ICLR (5) 8458 --- 88.40 84.78
(0.78) (0.75) (0.79)
PCLR (6) 795 - 76.21 -
(0.86) (0.87)
ICLR (6) 81.08 --- 83.49 ---
(0.81) (0.78)
PCLR (7) 81.23 ---
(0.81)
ICLR (7) 89.91 ---
(0.75)

In table 10, The value of the likelihood ratio statistic, regardless of which two models are being
compared, yields a value that lies between 0, when there is extreme non-significance, and co, when
there is extreme significance. We can observe from the above table that the value of G2 is high for
the ICLR models than the PCLR models. Hence the values of G? along with MSE and Max,
confirms the better performance of ICLR than PCLR.
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9.2. Analysis of Datasets with p = 0.9 Real and Estimated Parameters with MSE and Max
Table 11: For Case 1:p = 0.9,P = 6,n = 100

Parameters Real PCLR(AII) PCLR(3) ICLR(AI ICLR(3)
B1 0.2203 5.2314 0.4998 3.1415 0.3398
B> 0.5169 7.2315 1.2298 5.2213 0.9189
Bs 0.5059 9.1314 0.6734 1.5989 0.8813
B4 0.3109 10.1318 0.4343 -2.8989 0.7979
Bs 0.5219 11.1317 2.0123 3.3214 0.8210
Be 0.2365 0.9782 1.6719 5.4358 1.3019
MSE 59.0273 0.8185 12.8387 0.2964
Max 10.6098 1.4904 5.1993 1.0654
Table 12: For Case 1:p = 0.9,P = 6,n = 200
Parameters Real PCLR(AII) PCLR(3) ICLR(AII) ICLR(3)
B1 0.5079 8.2190 1.2908 2.3173 0.7912
B> 0.4003 8.4592 0.9873 3.1919 0.9250
Bs 0.2976 12.6312 0.9930 3.0092 0.9971
B 0.4953 5.9125 1.5639 1.8962 0.1185
Bs 0.3088 0.1919 1.9016 4.271 0.7130
B 0.3913 5.3954 0.3098 7.1302 0.5631
MSE 55.1542 0.8544 13.5823 0.1966
Max 12.3336 1.5928 6.7389 0.6995
Table 13: For Case 1:p = 0.9,P = 6,n = 300
Parameters Real PCLR(AII) PCLR(3) ICLR(AIl) ICLR(3)
B 75.7979 0.1699 2.2031 0.0438 75.7979
B> 34.3618 0.0357 7.8276 0.4233 34.3618
Bs 86.7319 0.0843 2.1359 0.4926 86.7319
B 112.8779 0.1607 70.4005 0.0001 112.8779
Bs 60.7370 3.2450 3.6679 0.2754 60.7371
Be 36.2295 0.4890 0.8456 0.0384 36.2295
MSE 67.7893 0.6974 14.5135 0.2123
Max 112.7172 84.5959 112.8778 0.0000
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In table 11-13, the first three PCs account for the 95% variation, so we include three PCs as reduced
number of variables to construct PCLR and three ICs for the construction of ICLR. The original
parameters are then reconstructed and the estimates of the parameters are obtained. The MSE of
the estimated parameters and the value of Max show the better performance of ICLRas compared
to PCLR. The values of MSE and Max are minimum for ICLR (3). ICLR(all) also performed better
than PCLR(all). If we make an overall comparison, then after ICLR (3) the PCLR (3) is on second
number. It can be observed that the values of the estimated parameters f are mostly very different
to the real ones. Such inaccurate estimation must be the result of multicollinearity. These bad
estimation results lead to a misleading interpretation of the parameters in terms of odds ratios.

Table 14: For Case 2:p = 0.9,P = 10,n = 100

Parameters Real PCLR(AII) PCLR(6) ICLR(AII) ICLR(6)
B1 0.3270 7.6312 0.8416 3.6312 0.7416
B2 0.3228 -5.2185 1.0513 5.2185 0.6051
B3 0.3163 9.1723 1.6251 6.1723 0.8351
Ba 0.2920 6.5123 0.5261 3.5123 0.5261
Bs 0.3158 6.0025 0.7798 0.0025 0.6828
Be 0.3270 3.6984 0.6162 1.6984 0.8612
B 0.3047 5.0345 1.0141 2.0345 0.3362
Bs 0.3072 9.2323 0.8995 4.2323 0.9775
Bo 0.3326 5.1254 0.9618 3.1254 0.8167
B1o 0.3142 10.1824 1.6793 4.1824 0.6189
MSE - 46.7264 0.5975 12.2688 0.1773
Max 9.8682 1.3651 5.8560 0.6703

Table 15: For Case 2:p = 0.9,P = 10,n = 200

Parameters Real PCLR(AII) PCLR(5) ICLR(AIl) ICLR(5)
B1 0.3448 3.3215 1.5416 3.3218 0.1416
B> 0.3251 8.7182 1.1912 5.2989 0.7051
B3 0.2903 12.2343 0.8521 4.3213 0.9351
B4 0.3238 7.2362 0.8361 7.2143 0.4261
Bs 0.3196 3.3312 1.6313 3.0012 0.6828
Be 0.2931 2.2314 0.4198 1.6984 0.5612
B 0.2995 -7.1562 0.0141 2.3245 0.7362
Bs 0.3231 4.5798 0.9965 5.2342 0.9775
By 0.3286 1.1432 1.3621 1.1172 0.0816
B1o 0.3104 6.1993 0.9990 4.3216 0.9189
MSE 39.1621 0.6574 15.1426 0.1865
Max 11.9440 1.3117 6.8905 0.6544
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Table 16: For Case 2:p = 0.9,P = 10,n = 300

Parameters Real PCLR(AII) PCLR(6) ICLR(AI) ICLR(6)
B1 0.3163 3.3215 1.5416 3.3218 1.5416
B2 0.3169 8.7182 1.1912 5.2989 0.1912
B3 0.3155 12.2343 0.8399 4.3213 0.3521
Ba 0.3161 7.2362 0.9987 7.2143 0.5361
Bs 0.3159 3.3312 1.0023 3.0012 0.6313
Be 0.3317 2.2314 0.9876 1.6984 0.4198
B 0.3146 -7.1562 1.2110 2.3245 0.0141
Bs 0.3174 4.5798 0.9632 5.2342 0.4965
Bo 0.3163 1.1432 1.3621 1.1172 0.3621
B1o 0.3022 6.1993 0.9875 4.3216 0.2990
MSE --- 39.1700 0.6691 15.1575 0.1799
Max --- 11.9188 1.2253 6.8982 1.2253

In table 14-16, the first six PCs account for the 95% variation, and in table 15 so we include six
PCs as well as five PCS as reduced number of variables to construct PCLR and six ICs for the
construction of ICLR. The original parameters are then reconstructed and the estimates of the
parameters are obtained. The MSE of the estimated parameters and the value of Max show the
better performance of ICLR as compared to PCLR. The values of MSE and Max are minimum for
ICLR (6). ICLR(all) also performed better than PCLR(all). If we make an overall comparison, then
after ICLR (6) the PCLR (6) is on second number. It can be observed that the values of the
estimated parameters 3 are mostly very different to the real ones. Such inaccurate estimation must
be the result of multicollinearity. These bad estimation results lead to a misleading interpretation
of the parameters in terms of odds ratios.
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Table 17: For Case 3: p = 0.9,P = 15,n = 100

Parameters Real PCLR(AII) PCLR(7) ICLR(AII) ICLR(7)
B1 0.5056 10.2319 1.5183 5.8012 0.7214
B2 0.1917 4.2923 0.5673 2.8713 0.2120
B3 0.2278 6.5492 0.9884 4.9953 0.9186
B 0.1916 5.6842 0.9926 3.2638 0.4321
Bs 0.1853 11.9819 0.8091 5.1162 0.8726
Be 0.2019 11.2905 1.5152 6.4381 0.6361
B~ 0.1613 7.6514 0.9633 5.0067 0.6328
Bs 0.2290 6.2048 0.8744 3.4719 0.4719
Bo 0.2020 7.8182 1.0900 2.2754 0.6819
B1o 0.5109 5.9801 1.9989 3.6260 0.8969
B11 0.1198 5.9319 1.7109 3.3384 0.6727
B12 0.3257 8.1919 1.1372 2.7189 0.7295
B13 0.1119 4.1799 0.9925 4.1018 0.3894
B4 0.1010 3.2272 0.9719 2.1261 0.4190
Bis 0.1910 4.2905 0.3198 2.4502 0.5718
MSE 50.8118 0.8869 14.6535 0.1796
Max 11.7966 1.5911 6.2362 0.6908
Table 19: For Case 3: p = 0.9,P = 15,n = 300
Parameters Real PCLR(AII) PCLR(5) ICLR(AI ICLR(5)
B1 0.4024 8.6528 1.9081 7.8262 0.7126
B> 0.3105 8.5432 0.8963 5.6546 0.9983
B3 0.1298 9.2363 0.7692 4.8340 0.3484
L4 0.3107 7.6528 0.9923 3.8262 0.9717
Bs 0.3039 6.6737 1.0013 3.3317 0.9989
Be 0.2198 8.1765 0.8917 5.1852 0.7253
B 0.3987 7.0664 1.1162 3.7214 0.1001
Bs 0.2119 6.6754 0.9782 2.1985 0.9379
Bo 0.1001 6.9473 0.8917 5.9986 0.5421
B1o 0.1891 9.9754 0.7826 1.0084 0.3111
B11 0.2278 5.9837 0.5969 3.9364 0.5132
B2 0.2916 8.1432 0.8351 1.0121 0.8163
P13 0.1853 7.1682 0.6125 1.1189 0.7142
B1a 0.2019 3.9719 0.7198 4.9886 0.8169
Bis 0.1613 45334 0.7752 7.9907 0.3261
MSE - 52.1548 0.5174 20.1193 0.2440
Max 9.7863 1.5057 7.8294 0.7260
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Table 19: For Case 3: p = 0.9,P = 15,n = 300

Parameters Real PCLR(AII) PCLR(5) ICLR(AI) ICLR(5)
B1 0.4024 8.6528 1.9081 7.8262 0.7126
B 0.3105 8.5432 0.8963 5.6546 0.9983
B3 0.1298 9.2363 0.7692 4.8340 0.3484
Ba 0.3107 7.6528 0.9923 3.8262 0.9717
Bs 0.3039 6.6737 1.0013 3.3317 0.9989
B 0.2198 8.1765 0.8917 5.1852 0.7253
B 0.3987 7.0664 1.1162 3.7214 0.1001
Bs 0.2119 6.6754 0.9782 2.1985 0.9379
Bo 0.1001 6.9473 0.8917 5.9986 0.5421
B1o 0.1891 9.9754 0.7826 1.0084 0.3111
Bi1 0.2278 5.9837 0.5969 3.9364 0.5132
B12 0.2916 8.1432 0.8351 1.0121 0.8163
Bis 0.1853 7.1682 0.6125 1.1189 0.7142
Bia 0.2019 3.9719 0.7198 4.9886 0.8169
Bis 0.1613 4.5334 0.7752 7.9907 0.3261
MSE 52.1548 0.5174 20.1193 0.2440
Max 9.7863 1.5057 7.8294 0.7260

In table 17 the first seven PCs account for 95% variation and in table 18 and 19, the first five PCs
account for the 95% variation, so we include five PCs as reduced number of variables to construct
PCLR and five ICs for the construction of ICLR. The original parameters are then reconstructed
and the estimates of the parameters are obtained. The MSE of the estimated parameters and the
value of Max show the better performance of ICLRas compared to PCLR. The values of MSE and
Max are minimum for ICLR (7,5). ICLR(all) also performed better than PCLR(all). If we make an
overall comparison, then after ICLR (7,5) the PCLR (7,5) is on second number. It can be observed
that the values of the estimated parameters 3 are mostly very different to the real ones. Such
inaccurate estimation must be the result of multicollinearity. These bad estimation results lead to
a misleading interpretation of the parameters in terms of odds ratios.
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Table 20: The value of G?and p-value (parentheses) with p = 0.9 for ICLR(s) and PCLR(s)

Models
P=6 P=10 P =15
Method n n n n n n n n n
=100 =200 =300 =100 =200 =300 =100 =200 =300
PCLR (3) 5738 68.4 63.19 --- --- ---
(0.99) (0.98) (0.97)
ICLR (3) 63.12 66.23 64.91 --- --- --- ---
(0.99) (0.97) (0.98)
PCLR (5) -- - 6819 - — 7140 62.19
(0.98) (0.88) (0.99)
ICLR (5) - - - - 70.23 --- --- 83.51 79.26
(0.89) (0.78) (0.86)
PCLR (6) - - - 58.4 --- 66.15 ---
(0.99) (0.97)
ICLR (6) - - --- 62.1 --- 70.13 ---
(0.99) (0.89)
PCLR (7) - --- --- --- --- --- 72.28
(0.88)
ICLR (7) - --- --- --- --- --- 78.48
(0.87)

In table 20, the value of the likelihood ratio statistic, regardless of which two models are being
compared, yields a value that lies between 0, when there is extreme non-significance, and oo, when
there is extreme significance. We can observe from the above table that the value of G2 is high for
the ICLR models than the PCLR models. Hence the values of G2 along with MSE and Max,

confirms the better performance of ICLR than PCLR.
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9.3. Analysis of Datasets with p = 0.95 Real and Estimated Parameters with MSE and Max

Table 21: For Case 1:p = 0.95,P = 6,n = 100

Parameters Real PCLR(AI) PCLR(3) ICLR(AI) ICLR(3)
B1 0.2976 6.1314 0.8917 1.8962 0.7854
B> 0.4953 6.3315 1.9942 4.2710 0.6010
Bs 0.5079 10.5140 1.0012 7.1302 0.4493
B4 0.4003 10.1318 0.5343 1.9872 0.8344
Bs 0.3100 8.4141 1.1123 3.1285 0.9928
B 0.3820 0.9928 0.9071 1.9717 0.5019
MSE 54.8280 0.6300 12.2759 0.1536
Max 10.0061 1.4989 6.6223 0.6828
Table 22: For Case 1:p = 0.95,P = 6,n = 200
Parameters Real PCLR(AII) PCLR(3) ICLR(AIl) ICLR(3)
B1 0.5079 9.7189 0.8439 3.1920 0.6917
B> 0.4003 7.2415 0.6116 2.1186 0.8893
Bs 0.2976 6.6698 0.3098 2.9989 1.0018
Ba 0.4953 5.1982 0.9063 1.9018 0.2187
Bs 0.3088 1.6614 1.8116 3.6183 0.6270
Be 0.3913 9.9917 0.6098 6.9918 0.5931
MSE 48.0606 0.4388 12.3252 0.1645
Max 9.6004 1.5028 6.6005 0.7042
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Table 23: For Case 1:p = 0.95,P = 6,n = 300

Parameters Real PCLR(AII) PCLR(3) ICLR(AI) ICLR(3)
B4 05029  7.2315 0.8989 1.8962 0.9928
B 03307  9.1314 0.9172 4.2710 0.5019
B3 05102  10.1318 1.6689 7.1302 0.4981
B 04908  7.4152 1.1219 8.8813 0.5019
Bs 0.1928  7.9862 0.8129 2.1080 0.7176
Be 0.3019  6.3210 0.9918 1.2215 0.8127
MSE 60.0359 0.5170 22.7009 0.1343
Max 9.6216 1.1587 8.3905 0.5248

In table 21-23, the first three PCs account for the 95% variation, so we include three PCs as reduced
number of variables to construct PCLR and three ICs for the construction of ICLR. The original
parameters are then reconstructed and the estimates of the parameters are obtained. The MSE of
the estimated parameters and the value of Max show the better performance of ICLRas compared
to PCLR. The values of MSE and Max are minimum for ICLR (3). ICLR(all) also performed better
than PCLR(all). If we make an overall comparison, then after ICLR (3) the PCLR (3) is on second
number. It can be observed that the values of the estimated parameters 3 are mostly very different
to the real ones. Such inaccurate estimation must be the result of multicollinearity. These bad
estimation results lead to a misleading interpretation of the parameters in terms of odds ratios.

Table 24: For Case 2:p = 0.95,P = 10,n = 100

Parameters Real PCLR(AII) PCLR(6) ICLR(AII) ICLR(6)
B4 0.3319 6.7182 1.0416 4.0112 0.6015
B 0.3337 6.6228 0.9987 6.1317 0.6689
B3 0.3093 8.1723 0.9983 4.3219 0.7314
Ba 0.3003 7.6193 1.1219 6.1215 0.9889
Bs 0.3321 5.9950 0.8018 2.1109 0.7889
B 0.3301 4.0021 0.5989 1.0001 0.9615
B 0.2986 6.1716 1.0019 2.1225 0.4212
Bs 0.3017 8.1313 0.8787 3.7123 0.8916
Bo 0.3287 4.9817 0.9714 2.9990 0.8204
B1o 0.2988 11.2319 1.5218 5.0014 0.7105
MSE 47.8262 0.5125 14.4958 0.2219
Max 10.9331 1.2230 5.8212 0.6886
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Table 25: For Case 2:p = 0.95,P = 10,n = 200

Parameters Real PCLR(AIl) PCLR(5) ICLR(AI) ICLR(5)
B4 0.3448  4.1223 2.0071 4.1872 0.4742
B 0.3251  7.6512 1.0032 5.0092 0.8209
Bs 0.2903  9.8862 0.9589 5.1615 0.6987
B4 0.3238  8.1926 0.9935 6.9189 0.9150
Bs 0.3196  4.3319 0.8218 6.1138 0.3480
Be 02931  3.0001 0.6960 1.0029 0.2418
B, 0.2995  6.1673 0.9187 1.3389 0.7695
Bs 03231  5.1859 0.7156 3.3219 0.2219
Bo 0.3286  2.0098 1.1962 1.0091 0.6382
B1o 0.3104  4.0147 1.0010 2.3384 0.7861
MSE 31.9993 0.6300 15.2654 0.1335
Max 9.5959 1.6623 6.5951 0.5912

Table 26: For Case 2:p = 0.95,P = 10,n = 300

Parameters Real PCLR(AII) PCLR(5) ICLR(AI) ICLR(5)
B4 0.3163 3.3215 1.5416 3.3218 0.4965
B> 0.3169 8.7182 1.1912 5.2989 0.3621
B3 0.3155 12.2343 0.8399 4.3213 0.7299
Ba 0.3161 7.2362 0.9987 7.2143 0.5361
Bs 0.3159 3.3312 1.0023 3.0012 0.6313
Be 0.3317 2.2314 0.9876 1.6984 0.9198
B 0.3146 -7.1562 1.2110 2.3245 0.8141
Bs 0.3174 4.5798 0.9632 5.2342 0.9145
Bo 0.3163 1.1432 1.3621 1.1172 0.8619
B1o 0.3022 6.1993 0.9875 4.3216 0.5812
MSE 39.1700 0.6692 15.1575 0.1681
Max 11.9188 1.2253 6.8982 0.5971

In table 24, the first six PCs account for the 95% variation, and in table 25,26 the first five PCs
account for the 95% variation so we include six PCs as well as five PCs as reduced number of
variables to construct PCLR and six ICs for the construction of ICLR. The original parameters are
then reconstructed and the estimates of the parameters are obtained. The MSE of the estimated
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parameters and the value of Max show the better performance of ICLR as compared to PCLR.
The values of MSE and Max are minimum for ICLR (6,5). ICLR(all) also performed better than
PCLR(all). If we make an overall comparison, then after ICLR (6,5) the PCLR (6,5) is on second
number. It can be observed that the values of the estimated parameters 3 are mostly very different
to the real ones. Such inaccurate estimation must be the result of multicollinearity. These bad
estimation results lead to a misleading interpretation of the parameters in terms of odds ratios.

Table 27: For Case 3:p = 0.95,P = 15,n = 100

Parameters Real PCLR(AII) PCLR(7) ICLR(AI) ICLR(7)
B 0.3315  6.6719 0.8917 6.1215 0.6828
B> 0.4614  6.6713 0.7826 2.1109 0.5612
B3 0.3216  9.1984 0.5969 1.0001 0.7362
Ba 0.2011  5.1875 0.8351 2.1225 0.9775
Bs 0.1998  7.7727 0.6125 6.4381 0.0816
Be 0.2317  9.1973 0.7198 5.0067 0.9189
B- 0.1189  5.1393 0.7752 3.4719 0.2328
Bs 0.2290  5.3482 1.1219 2.2754 0.4719
Bo 0.1601  7.8262 0.8018 3.6260 0.6819
B1o 0.3316  5.6546 0.5989 3.3384 0.5969
B11 0.1243  10.8340 1.0019 2.7189 0.6727
B12 0.3374  13.8262 0.8787 4.1018 0.7295
B3 0.1101  6.3317 0.9714 2.1261 0.3894
Bia 0.2752  5.1852 1.5218 2.4502 0.4190
Bis 0.1190  3.7214 0.5398 3.1202 0.5718
MSE 55.4073 0.4367 11.8202 0.1711
Max 13.4888 1.2466 6.2383 0.7764
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Table 28: For Case 3:p = 0.95,P = 15,n = 200

Parameters Real PCLR(AII) PCLR(7) ICLR(AII) ICLR(7)
B1 0.2983 9.1973 0.9260 3.0012 0.3172
B 0.3918 5.1393 0.8091 1.6984 0.8172
B3 0.3372 5.3482 0.7152 2.3245 0.1128
Ba 0.1908 8.1573 0.6633 5.2342 0.7476
Bs 0.1978 6.6754 0.5152 1.1172 0.4719
B 0.2198 6.9473 0.9633 4.3216 0.6819
B 0.3987 9.9754 0.8744 4.1683 0.5969
Bs 0.2119 5.9837 0.7109 6.0023 0.6727
Bo 0.1001 8.1432 1.9989 3.8914 0.7295
B1o 0.1891 5.3482 0.7109 9.1753 0.8612
B11 0.2278 7.0957 1.1372 3.9928 0.3362
B1z 0.2916 5.3482 0.9925 1.9312 0.9775
B3 0.1104 7.8262 0.9994 3.3220 0.8167
Bia 0.2752 5.6546 1.1298 4.7838 0.6189
Bis 0.1910 10.8340 0.9987 2.3328 0.5293
MSE 51.2227 0.6288 16.7350 0.2095
Max 10.6430 1.8988 8.9862 0.7063
Table 29: For Case 3:p = 0.95,P = 15,n = 300

Parameters Real PCLR(AII) PCLR(6) ICLR(AII) ICLR(6)
B4 0.2119  9.8862 0.9782 5.2989 0.6339
B> 0.1001  8.1926 1.5183 4.3213 0.3365
B3 0.1891  4.3319 0.5673 7.2143 0.5845
Ba 0.2278  3.0001 0.9884 3.0012 0.5037
Bs 0.2916  6.1673 0.9926 1.6984 0.4501
Be 0.5109  5.1859 0.8091 2.3245 0.9928
B- 0.1198  2.0098 1.5152 5.2342 0.4258
Bs 0.3257  4.0147 0.7752 1.1172 0.6081
Bo 0.1119  10.995 0.9717 5.1615 0.7535
B1o 0.2791  7.0021 0.8826 6.9189 0.5779
B 0.3178  6.1716 0.6769 6.1138 0.1883
B12 0.4012  8.1313 0.8351 1.0029 0.6947
Bis 0.1713  9.9817 0.6125 1.3389 0.7582
Bia 0.2117  7.0719 0.6198 3.3219 0.4541
Bis 0.1013  8.9334 0.9652 1.0091 0.5689
MSE 49.0976 0.5718 16.5463 0.1415
Max 10.8831 1.4182 7.0252 0.6416
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In table 27-28, the first seven PCs account for the 95% variation, in table 29 the first six PCs
account for 95% variation so we include seven as well as six PCs as reduced number of variables
to construct PCLR and seven as well as six ICs for the construction of ICLR. The original
parameters are then reconstructed and the estimates of the parameters are obtained. The MSE of
the estimated parameters and the value of Max show the better performance of ICLRas compared
to PCLR. The values of MSE and Max are minimum for ICLR (7,6). ICLR(all) also performed
better than PCLR(all). If we make an overall comparison, then after ICLR (7,6) the PCLR (7,6) is
on second number. It can be observed that the values of the estimated parameters £ are mostly
very different to the real ones. Such inaccurate estimation must be the result of multicollinearity.
These bad estimation results lead to a misleading interpretation of the parameters in terms of odds
ratios.

Table 30: The value of G2and p-value (parentheses) with correlation = 0.95 for ICLR(s) and
PCLR(s) Models

P=6 P =10 P =15

Method n n n n n n n n n
=100 =200 =300 =100 =200 =300 =100 =200 =300

PCLR(3) 5819 66.80 77.15  --
(0.99) (0.98) (0.87)

ICLR(3) 7987 8315 8264 -
(0.82) (0.79) (0.80)

PCLR (5) --- 70.78  79.30
(0.88) (0.82)

ICLR(5) --- 88.72  89.82
(0.75)  (0.75)

PCLR (6) --- - 7219 - - 70.19

(0.88) (0.88)

ICLR (6) --- - 8611 - - 79.90

(0.79) (0.82)

PCLR(7) - -~ 6668 7211 @ -

(0.97) (0.88)
ICLR (7) - -~ 8419 8511  --

0.79)  (0.79)

In table 30, the value of the likelihood ratio statistic, regardless of which two models are being
compared, yields a value that lies between 0 andoo, when there is extreme significance. We can
observe from the above table that the value of G2 is high for the ICLR models than the PCLR
models. Hence the values of G2 along with MSE and Max, confirms the better performance of
ICLR than PCLR.
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10. Conclusion

The logistic regression model is used to predict a binary response variable in terms of a set of
explicative ones. In the presence of multicollinearity among predictor, the estimation of the model
parameters is not very accurate and their interpretation in terms of odds ratios may be inaccurate.
Another important problem is that usually a large number of predictors usually required explaining
the response. In order to improve the estimation of the logistic model parameters under
multicollinearity and to reduce the dimensions of the problem with continuous covariates, it is
proposed to use as covariates of the logistic model a reduced set of optimum independent
components of the original predictors. The performance of the proposed independent component
logistic regression model is analyzed by developing a simulation study where different methods
for selecting the optimum independent components are compared. We built up a simulation study
to illustrate the performance of the proposed ICLR model and to demonstrate how the estimation
of logit model parameters with collinear regressors can be improved by utilizing ICs.

The simulation design is carried out by choosing:

e Three different number of regressorsi.e. P = 6,10, and 15
e Three different sample sizes i.e. n = 100, 200 and 300
e Three different levels of correlation among the regressors i.e. p = 0.8,0.9 and 0.95

In this way we obtain nine different tables each with above stated three different correlation levels
and overall, twenty-seven tables.

We include first s PCs as reduced number of variables to construct PCLR and s ICs for the
construction of ICLR for all the 27 tables. The L,norm is used to order the ICs. The original
parameters are then reconstructed and the estimates of the parameters are obtained. The MSE of
the estimated parameters and the value of Max show the better performance of ICLRas compared
to PCLR for all the models. The values of MSE and Max are minimum for ICLR(s). ICLR (all)
also performed better than PCLR (all). If we make an overall comparison, then after ICLR(s) the
PCLR(s) is on second number. It was revealed from the results that the values of the estimated
parameters § are mostly very different to the real ones. Such inaccurate estimation must be the
result of multicollinearity. These bad estimation results lead to a misleading interpretation of the
parameters in terms of odds ratios.

The value of the likelihood ratio statistic, regardless of which two models are being compared,
yields a value that lies between 0, when there is extreme non-significance, and oo, when there is
extreme significance. We can observe from the above table that the value of G2 is high for the
ICLR models than the PCLR models. Hence the values of G2 along with MSE and Max, confirms
the better performance of ICLR than PCLR.

Finally, it is concluded that with respect to the comparison with PCLR, the ICLR model provides
better estimation of the logit model parameters (less MSE and Max) with better goodness-of-fit
measures and needs less components so that the interpretation of the model parameters is more
accurate.
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