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Abstract 

The logistic regression model is used to predict a binary response variable in terms of a set of explicative ones. In the 

presence of multicollinearity among predictor, the estimation of the model parameters is not very accurate and their 

interpretation in terms of odds ratios may be inaccurate. Another important problem is that usually a large number of 

predictors are required to explain the response. In order to improve the estimation of the logistic model parameters 

under multicollinearity and to reduce the dimensions of the data with continuous covariates, it is proposed to use as 

covariates of the logistic model a reduced set of optimum independent components of the original predictors. Breast 

cancer data is used as real data set. The performance of the proposed independent component logistic regression model 

is analyzed by developing a simulation study where different methods for selecting the optimum independent 

components are compared. We built up a simulation study to illustrate the performance of the model with different 

regressors, sample size, and correlation among the regressors. Independent component logistic regression compared 

with principal component logistic regression model and independent component logistic regression gives better results.  

Keywords: Dimension reduction, Independent components, Logistic regression, Multicollinearity, Breast 

cancer.   
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1. Introduction 

It is essential to predict a binary response variable in various fields of study, for example, 

medication and the study of disease transmission or comparably the likelihood of occurring of an 

event achievement, regarding the estimations of a lot of explicatory factors identified with it. The 

Logistic Regression (LR) serves perfectly and is the most utilized for various cases as should be 

obvious for instance in Prentice and Pyke (1979). As many authors stated that (Hosmer and 

Lemeshow, 1989, Ryan, 1997) among others, the Logistic Model (LM) becomes unbalanced when 

predictors are highly correlated among themselves, so it seems that no one variable is important 

when all the others are in the model. In this case the estimation of the parameters of the model 

computed by R-software. As a result, the interpretation of the relationship between the response 

and each explanatory variable in terms of odds ratios may be invalid. Dependent variable is 

dichotomous and binary in LR, i.e., data coded values are utilized as in tumor case 1 is utilized for 

dangerous or 0 is utilized for not. At the point when the dependent variable is dichotomous then 

LR is the suitable regression examination to lead. In LR model predictor variables are highly 

correlated then there is multicollinearity. During the estimation of linear or generalized linear 

model including LR and Cox regression, multicollinearity is a common problem. To detect 

multicollinearity correlation matrix may be helpful but not sufficient in LR. If the model satisfies 

the logistic assumptions, then the analysis is valid and if the model does not satisfy the logistic 

assumption, then there is some problem in the model. For the LR coefficients there are biased 

coefficient estimates or large standard errors may present due to multicollinearity and invalid 

statistical inferences are produced. By using the model for any statistical inference, watch that 

model fits adequately well. When the model includes multiple factors that are correlated not just 

to response variable but also with each other then it refers multicollinearity in LR. In LR model 

predictor variables are highly correlated then there is multicollinearity. If we have a huge number 

of variables, then there exist a high dimensional issue and it can be resolve by reducing the number 

of variables. The number of variables can be reduced using dimension reduction techniques like 

Principal Component Analysis (PCA) or Independent Component Analysis (ICA).  

2. Objective of the Study 

The main objectives of the research are to overcome the problem of multicollinearity among the 

explanatory variables in LR model. Propose a new method to overcome the problem of 

multicollinearity by using a relatively new Blind Source Separation (BSS) technique Independent 

Components Analysis (ICA) and compare the proposed technique with Principal Components 

Logistic Regression (PCLR). 

3. Organized of the paper 

The current study is organized as section wise in section 4 discussed the literature Review, in 

section 5 discussed advantages and dis-advantages of the proposed study. In section 6 define a 

basic theory on logistic regression. In section 7 discussed independent component logistic 

regression (ICLR) Model and in section 8 detailed Handling Multicollinearity using ICLR. In 

section 9 define an Application of the Proposed ICLR Model and last section 10 conclusion. 

4. Literature Review 

Schaefer et al. (1984) proposed a ridge logistic estimator. Cessie , Houwelingen (1992) designed 

ridge estimators in LR. It is shown how ridge estimators can be used in LR to improve the 

parameter estimates and to diminish the error made by further predictions. Steyerberg et al. (2001) 

analyzed a case study in which application of shrinkage methods in LR analysis was explained. 

https://rss.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Cessie%2C+S
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Hubert and Wijekoon (2006) showed the improvement of the Liu estimator in linear regression 

model. Mansson and Shukur (2011) make research in LR on ridge parameters. This paper applies 

and explores various Logistic Ridge Regression (LRR) parameters that were observable by 

utilizing the method of ML. Bastien et al. (2005) determined about the PLS generalized linear 

regression. Aguilera et al. (2007) discussed the useful PLS logit regression model. Aguilera et al. 

(2006) determined that what could be done by utilizing PCs for calculating LR with high-

dimensional multicollinear data. Escabias et al. (2004) described the PC estimation of functional 

LR and discussed two different approaches. Over the last few years many methods have been 

developed for analyzing functional data with different objectives. Aguilera et al. (2005) explained 

about the modeling environmental data by functional PCLR. Morillo et al. (2013) examined for 

functional logit regression the penalized spline approaches. Zhou et al. (2014) investigated that the 

face recognition depends on PCA and LR analysis. Agyekum et al. (2023) determined about the 

impact of sample size on multicollinearity with high dimensional data in LR analysis. 

5. Advantages and Dis-advantages of the Proposed Study 

In logistic regression model there is multicollinearity among predictors. Due to the 

multicollinearity the estimation of the model parameters is not very accurate. The major advantage 

of the proposed study is to reduce multicollinearity and also independent component analysis helps 

to reduce dependence among predictors and gives better results.  

6. Basic theory on logistic regression 

We formulate the model to establish the theoretical framework about LR by estimating its 

parameters and testing its goodness of fit. A best fitted model is found by the LR that is utilized to 

clarify the connection between one dependent binary factor and at least one nominal, ordinal, 

interval or ratio level independent factors and that is the fundamental objective of LR. LR model 

is given as below, 

𝑌𝑖 = 𝜋𝑖 + 𝜀𝑖   i=1, 2, …, n                                       (1) 

𝑌given (𝑋1 = 𝑥𝑖1 , 𝑋2 = 𝑥𝑖2, … , 𝑋𝑝 = 𝑥𝑖𝑝) is the expectation of 𝜋𝑖 that can be modelized as 

        
𝜋𝑖 = 𝑃{𝑌 = 1|𝑋1 = 𝑥𝑖1, … , 𝑋𝑝 = 𝑥𝑖𝑝} =

exp{𝛽0+∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 }

1+exp {𝛽0+∑ 𝑥𝑖𝑗𝛽𝑗}
𝑝
𝑗=1

                   (2)  

   

Where parameters of the model are 𝛽0, 𝛽1, … , 𝛽𝑝 and variances of Ԑi are 

       𝑉𝑎𝑟[Ԑ𝑖] = 𝜋𝑖(1 − 𝜋𝑖)     , 𝑖 = 1, … , 𝑛  

Coefficients of a method to predict a logit change of the probability of occurrence of the qualities 

of concern are created by the LR, which is as follows, 

 𝐿𝑜𝑔𝑖𝑡(𝑝) = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 +⋯+ 𝑏𝑝𝑋𝑝  

Probability of occurrence of qualities of interest is p and logit transformation are written in terms 

of logged odds, 

https://www.sciencedirect.com/science/article/pii/S0030402614008511#!
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𝑂𝑑𝑑𝑠 = (

𝑝

1 − 𝑝
) =

Probability of presence of characteristics of interest

Probability of absence of characteristics of interest
  

and 

 𝑙𝑜𝑔𝑖𝑡(𝑝) = ln (
𝑝

1 − 𝑝
)  

As link function a Generalized Linear Model (GLM) with logit transformation can be expressed 

as LR. To return a probability value LR converts its output using the logistic sigmoid function. 

Dependent variable structure, perception independence, non-appearance of multicollinearity, 

linearity of autonomous factors and log odds, and enormous sample size are the assumptions of 

LR. 

The mostly used for the estimation of LR is maximum likelihood. Let 𝐿(𝑍: 𝛽)  be the likelihood 

specified by 

 𝐿(𝑍: 𝛽) = ∏ 𝜋
𝑗

𝑧𝑗(1 − 𝜋𝑗)
1−𝑧𝑗𝑚

𝑗=1                                  (3)  

In multicollinearity maximum likelihood does not give accurate results. Firstly, an indicator of 

multicollinearity in LR is selected. The pairwise correlations and VIF may be utilized when the 

regressors are all continuous and if various predictors are not continuous then the problem of 

multicollinearity will be increased. Multicollinearity is a problem that exists when variables are 

highly correlated to each other, and it can be detected easily by displaying the correlation matrix 

of continuous independent factors. In regression analysis model, overfitting is the main danger that 

occurs due to data redundancy. The best reversion models are those in which the predictor factors 

each associate exceedingly with the dependent result variable however connect all things 

considered just insignificantly with one another. 

7. Independent component Logistic Regression (ICLR) Model  

Firstly, we describe the ICA of a set of variables and its properties. Secondly, we will formulate 

the ICLR model then describe the simulation scheme and use different methods to select the IC’s 

explanatory variables in the ICLR model. 

7.1. Independent component analysis (ICA) 

A statistical latent variables model can be used to thoroughly describe ICA. Suppose that we 

examine r random variables 𝑥1𝑡 , 𝑥2𝑡. . . , 𝑥𝑟𝑡   and these are modeled as linear combination of m 

random variables𝑠1𝑡, 𝑠2𝑡, … , 𝑠𝑚𝑡whereas 𝑚 ≤ 𝑟, after that 

 𝑥𝑖𝑡 = 𝑤𝑖1𝑠1𝑡 + 𝑤𝑖2𝑠2𝑡 +⋯+𝑤𝑖𝑚𝑠𝑚𝑡,    𝑖 = 1,2, … , 𝑟  

Whereas some real coefficients are 𝑤𝑖1(𝑖 = 1,2, … , 𝑟 𝑎𝑛𝑑 𝑗 = 1,2, … ,𝑚).  non-Gaussian 

distributed components and statistically mutually independent components are 𝑠𝑖𝑡  which are 

described by definition. This is the general ICA model. 

Once the model has been estimated then its goodness of fit must be tested. 

Let 𝑀𝑝denotes the specific logit model which is obtained by equating zero certain number 𝑙 of 

parameters, 𝛽1, … , 𝛽𝑙selected among the p + 1 ones of model 𝑀. The likelihood statistic for the 
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comparison of the model 𝑀𝑝to model 𝑀tests the hypothesis that all parameters in model 𝑀but not 

in model 𝑀𝑝equal to zero. Then the conditional likelihood-ratio statistics for testing model 𝑀𝑝, 

given that 𝑀  holds, is given by the difference in the 𝐺2  goodness-of-fit statistics for the two 

models to be compared and is given as: 

 𝐺2(𝑀𝑃 𝑀⁄ ) = 2(ʆ𝑀 − ʆ𝑀𝑃) = 𝐺
2(𝑀𝑃) − 𝐺

2(𝑀)                        (4)  

For the simpler model 𝑀𝑃  the ʆ𝑀𝑃  being the maximum log-likelihood that removes those 𝑙 

parameters. With 𝑑𝑓 eqvivalent to the difference among the residual 𝑑𝑓 for the two compared 

models in the fitted model 𝑀 the number 𝑙 of parameters equivalent to zero, it is a huge sampled 

statistic of chi-square. 

7.2. ICLR Model Formulation 

To characterize the model of ICLR we will prepare the logit model in words of all the IC’s related 

to the observations of matrix X which are the continuous predictor variables. With no loss of 

simplification, we will assume that the regressors are centered. In terms of all the IC’s the success 

probabilities of the logit model can be articulated as 

 
𝜋𝑖 =

exp {𝛽0+∑ ∑ 𝑧𝑖𝑘𝜈𝑗𝑘𝛽𝑗}
𝑝
𝑘=1

𝑝
𝑗=1

1+exp {𝛽0+∑ ∑ 𝑧𝑖𝑘𝜈𝑗𝑘𝛽𝑗}
𝑝
𝑘=1

𝑝
𝑗=1

  = 
exp {𝛽0+∑ 𝑧𝑖𝑘𝛾𝑘}

𝑝
𝑘=1

1+exp {𝛽0+∑ 𝑧𝑖𝑘𝛾𝑘}
𝑝
𝑘=1

  

Being the elements of the IC’s matrix L=XV and 𝛾𝑘 = ∑ 𝜈𝑗𝑘𝛽𝑗
𝑝
𝑗=1  , k= 1,…,p with 𝑧𝑖𝑘 ,  (i=1,…,n; 

k=1,…,p). In terms of the logit transformation the logistic model can be equally determined in 

matrix form and the IC’s as 

 𝐿 = 𝑋𝛽 = 𝑍𝑉′𝛽 = 𝑍𝛾,                                                 (5) 

Wherever 

 𝑍 = (𝟏|𝐿) ,(
1|0′

0|𝜈
),   𝟎 = (0,… ,0)′, 𝟏 = (1,… ,1)′.  

Thus, as described in the sense of those of the model that contains as covariates all the IC’s the 

parameters of the logit model can be attained. 𝛽 = 𝑉𝛾. We have the prediction equation 𝑌̂ = 𝜋̂,  

 𝛽̂ = 𝑉𝛾                                                                              (6) 

as a result of the invariance property of ML estimates.  

In the case of collinearity to advance the original parameters estimation we will introduce the ICLR 

model. As covariates of the logit model by taking a reduced set of IC’s of the original predictors 

the ICLR model is obtained.  
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Z and V Split matrices are given below 

 

𝑍 = (

1 𝑧11 ⋯ 𝑧1𝑠
1 𝑧21 ⋯ 𝑧2𝑠
⋯
1

⋯
𝑧𝑛1

⋯ ⋯
⋯ 𝑧𝑛𝑠

|

𝑧1𝑠+1 ⋯ 𝑧1𝑝
𝑧2𝑠+1 ⋯ 𝑧2𝑝
⋯
𝑧𝑛𝑠+1

⋯
⋯

⋯
𝑧𝑛𝑝

) = (𝑍(𝑠)|𝑍(𝑟)) , (𝑟 = 𝑝 − 𝑠)  

 

   and 

 

𝑉 =

(

 
 

1 0 ⋯ 0
0 𝜈11 ⋯ 𝜈1𝑠

0
⋯
0

𝜈21
⋯
𝜈𝑝1

⋯ 𝜈2𝑠
⋯
⋯

⋯
𝜈𝑝𝑠

|
|

0 ⋯ 0
𝜈1𝑠+1 ⋯ 𝜈1𝑝
𝜈2𝑠+1
⋯
𝜈𝑝𝑠+1

⋯
⋯
⋯

𝜈2𝑝
⋯
𝜈𝑝𝑝)

 
 

= (𝑉(𝑠)|𝑉(𝑟)).  

 

Then𝑍(𝑠) = 𝑋𝑉(𝑠) and 𝑍(𝑟) = 𝑋𝑉(𝑟), thus the original parameters can be articulated as 

 𝛽 = 𝑉𝛾 = 𝑉(𝑠)𝛾(𝑠) + 𝑉(𝑟)𝛾(𝑟) ,  

Wherever 

 𝛾 = (𝛾0𝛾1⋯𝛾𝑠|𝛾𝑠+1⋯𝛾𝑝)
′
= (𝛾′(𝑠)|𝛾

′
(𝑟)
)
′

.  

 

In terms of all the ICs the logit model given by Eq. (3.11), can be expressed as 

𝐿 = 𝑍𝛾 = 𝑍(𝑠)𝛾(𝑠) + 𝑍(𝑟)𝛾(𝑟),the ICLR model as far as s ICs (ICLR(s)) is acquired by removing the 

r last ICs in the last equation, so we had 

 𝑦𝑖 = 𝜋𝑖(𝑠) + Ԑ𝑖(𝑠),  

Wherever 

 
𝜋𝑖(𝑠) =

exp {𝛾0+∑ 𝑧𝑖𝑗𝛾𝑗}
𝑠
𝑗=1

1+exp {𝛾0+∑ 𝑧𝑖𝑗𝛾𝑗}
𝑠
𝑗=1

, i=1,…,n.  

In matrix form as far as the vector of logit conversion 𝐿(𝑠) = (𝑙1(𝑠), … , 𝑙𝑛(𝑠)) this model can be 

equivalently formulated with components 𝑙𝑖(𝑠) = 𝑙𝑛 (
𝜋𝑖(𝑠)

(1 − 𝜋𝑖(𝑠))
⁄ ) as given: 

 𝐿(𝑠) = 𝑍(𝑠)𝛾(𝑠) = 𝑋𝑉(𝑠)𝛾(𝑠) = 𝑋𝛽(𝑠).  

As a result, a renovation of the original parameters has acquired known by𝛽(𝑠) = 𝑉(𝑠)𝛾(𝑠), as far 

as the ICLR model’s parameters that has as covariates the first s ICs. An estimation of the original 

parameters 𝛽 will be given by the ML estimation of this ICLR model which is described as  
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  𝛽̂(𝑠) = 𝑉(𝑠)𝛾(𝑠), (7) 

That will recover the𝛽̂ estimation attained by means of original variables if there should be an 

occurrence of multicollinearity. In the last one the estimator 𝛾(𝑠) as far as the first s ICs are not the 

vector of the initial s components of the estimator  𝛾 as far as all the ICs that is the main variation 

among ICR and ICLR. Such as, 𝛾(𝑠) = (𝛾0(𝑠), 𝛾1(𝑠), … , 𝛾𝑠(𝑠))′ ≠ (𝛾0, 𝛾1, … , 𝛾𝑠)′. As a result the 

ICLR(s) model estimated the probabilities 𝜋̂𝑖(𝑠)are diverse to the ones acquired in abbreviating the 

model’s ML estimated probabilities that has all the ICs as regressors. This is, 

 
𝜋̂𝑖(𝑠) =

exp {𝛾0(𝑠) + ∑ 𝑧𝑖𝑗𝛾𝑗(𝑠)}
𝑠
𝑗=1

1 + exp {𝛾0(𝑠) + ∑ 𝑧𝑖𝑗𝛾𝑗(𝑠)}
𝑠
𝑗=1

≠
exp {𝛾0 + ∑ 𝑧𝑖𝑗𝛾𝑗}

𝑠
𝑗=1

1 + exp {𝛾0 + ∑ 𝑧𝑖𝑗𝛾𝑗}
𝑠
𝑗=1

.  

In computational exertion this implies an impressive extension because each time the model of 

ICLR has to be straightened out we remove or enter a innovative PC in the model. 

7.3. Model Selection 

In turn to attain best probable estimation of logit model parameters, for choosing the most 

favorable ICLR model we will utilize different criteria that was used by (Aguilera et al. (2006)) 

depends on various accuracy evaluations of the estimated parameters. 

 Firstly, the Mean Squared Error of the Beta parameter vector (MSEB) is determined 

 

𝑀𝑆𝐸𝐵(𝑠) =
1

𝑝 + 1
∑(𝛽̂𝑗(𝑠) − 𝛽𝑗)

2

𝑝

𝑗=0

, 𝑠 = 1,… , 𝑝.  

 Secondly, the maximum of the absolute differences of the beta parameters is defined as 

 𝑀𝑎𝑥(𝑠) = 𝑀𝑎𝑥𝑗{|𝛽𝑗(𝑠) − 𝛽𝑗|}, 𝑠 = 1, … , 𝑝.  

However, the best estimation of the model probabilities is provided by the best estimation of the 

original parameters can be imagined. 

Let us check that better estimation of the parameters will be indicated by the undersized values of 

mean squared error (MSE) and Max (Maximum). Latterly in the simulation study we will choose 

the optimum model with the smallest MSE and Max. 

When the real data is analyzing by us at that time the estimated and real parameter’s comparison 

is not possible, then we could not compute the MSE and Max and another measure of accuracy of 

the estimation is needed to be defined that does not consider the real unknown parameters. A 

number of authors, Aucott et al. (2000), among others, noted that in the linear regression to a bad 

estimation the variance of estimated parameters is very responsive. 

8. Handling Multicollinearity Using ICLR 

This section presents the application of the proposed ICLR model to tackle the problem of 

multicollinearity. A comparison of ICLR with Principal Component Logistic Regression Model 

(PCLR) (Aguilera, 2006) is also made. 
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8.1. The Simulation Scheme 

We built up a simulation study to illustrate the performance of the proposed ICLR model and to 

demonstrate how the estimation of logit model parameters with collinear regressors can be 

improved by utilizing ICs.  

The simulation design is carried out by choosing: 

 Three different number of regressors i.e. 𝑃 = 6, 10, 𝑎𝑛𝑑 15 

 Three different sample sizes i.e. 𝑛 = 100, 200 𝑎𝑛𝑑 300 

 Three different levels of correlation among the regressors i.e. 𝜌 = 0.8, 0.9 𝑎𝑛𝑑 0.95 

In this way we obtain nine different tables each with above stated three different correlation levels 

and overall, twenty-seven sets of tables from one data set. 

The cholesky decomposition method is applied to obtain 𝑃 regressors with a known correlation 

structure. The 𝑃 variables are generated as regressors from multivariate normal distribution with a 

specific correlation level. 

As a second step, a vector of real parameters 𝛽 is fixed. The vector of real parameters 𝛽 is chosen 

as normalized eigen vectors corresponding to the largest eigen values of 𝑋𝑡𝑋 so that 𝛽𝑡𝛽 is equal 

to one following Newhouse and Oman (1971). 

The binary response was simulated by pursuing the plan of the simulation studies created in 

conducted by Hosmer et al. (1997) and Pulkstenis and Robinson (2002). The real probabilities are 

computed by the model: 

𝜋 =
exp (𝑥′𝑖𝛽)

1 + exp (𝑥′𝑖𝛽)
,       𝑖 = 1,… , 𝑛, 

At last, with parameter 𝜋𝑖 , 𝑦𝑖 → 𝐵(𝜋𝑖)(𝑖 = 1,… , 𝑛) from a Bernouilli distribution each sample 

value of the binary response was simulated. 

9. Application of the Proposed ICLR Model 

For three distinctive numbers of regressors(𝑃 = 6, 10 𝑎𝑛𝑑 15), three diverse sample sizes (𝑛 =
 100, 200 𝑎𝑛𝑑 300),  three different correlations  𝜌 = 0.8,0.9 𝑎𝑛𝑑 0.95  and one unique 

distribution of the collinear regressors is used. According to this method 27 tables are given below 

and these are divided in different cases according to the number of regressors, sample sizes and 

correlation and each case contain 9 tables. Data set 1 contains three cases for 𝜌 = 0.8, 𝑃 = 6 and 

sample size is changed for every case and three cases for 𝜌 = 0.8, 𝑃 = 10 and sample sizes are 

(𝑛 =  100, 200 𝑎𝑛𝑑 300) for case 1, 2 and 3 and three cases for 𝜌 = 0.8, 𝑃 = 15. Data set 2 

contains three cases for 𝜌 = 0.9, 𝑃 = 6 and sample size is changed for every case and three cases 

for 𝜌 = 0.9, 𝑃 = 10 and sample sizes are (𝑛 =  100, 200 𝑎𝑛𝑑 300) for every case and three cases 

for𝜌 = 0.9, 𝑃 = 15 . Data set 3 contains three cases for 𝜌 = 0.95, 𝑃 = 6  and sample size is 

changed for every case and three cases for 𝜌 = 0.95, 𝑃 = 10  and sample sizes are (𝑛 =
 100, 200 𝑎𝑛𝑑 300) for every case and three cases for𝜌 = 0.95, 𝑃 = 15. All of these are given 

below. 
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9.1.  Analysis of Datasets with 𝝆 = 𝟎. 𝟖 Real and Estimated Parameters with 𝑴𝑺𝑬 and 𝑴𝒂𝒙 

Table 1: For Case 1, 𝜌 = 0.8, 𝑃 = 6, 𝑛 = 100 

Parameters Real PCLR(All) PCLR(3) ICLR(All) ICLR(3) 

𝛽1     0.4015 4.9827 0.9217 4.1090 0.2200 

𝛽2 0.3216 10.1327 1.3316 6.3915 0.6916 

𝛽3 0.5298 8.8181 0.9896 2.1919 0.9818 

𝛽4 0.3389 9.2987 0.6984 3.2512 0.6184 

𝛽5 0.5016 9.9984 1.1995 3.3214 0.7715 

𝛽6 0.2929 3.2198 1.6719 3.2898 0.9898 

MSE --- 60.8292 0.6700 13.1277 0.1685 

Max --- 9.8111 1.3790 6.0699 0.6969 

Table 2: For Case 1, 𝜌 = 0.8, 𝑃 = 6, 𝑛 = 200 

Parameters Real PCLR(All) PCLR(3) ICLR(All) ICLR(3) 

𝜷𝟏 0.4718 9.3129 0.9138 5.1423 0.9616 

𝜷𝟐 0.5125 7.6814 0.9917 4.1193 0.7719 

𝜷𝟑 0.3018 10.9815 1.2319 3.8716 0.9823 

𝜷𝟒 0.2917 9.8917 0.9813 2.2219 0.2126 

𝜷𝟓 0.4104 3.2419 0.9919 5.1910 0.5139 

𝜷𝟔 0.4010 1.1286 0.9796 6.1010 0.5524 

MSE --- 57.3868 0.4064 17.7726 0.1350 

Max --- 10.6797 0.9301 5.7000 0.6805 

Table 3: For Case 1, 𝜌 = 0.8, 𝑃 = 6, 𝑛 = 300 

Parameters Real PCLR(All) PCLR(3) ICLR(All) ICLR(3) 

𝜷𝟏 0.5612 7.1761 0.8167 3.2145 0.7682 

𝜷𝟐 0.5013 6.5519 1.2219 2.2281 0.5903 

𝜷𝟑 0.3391 5.2317 0.6719 1.6314 0.9384 

𝜷𝟒 0.3418 6.6692 0.8517 5.7123 0.4615 

𝜷𝟓 0.3916 6.0915 0.9819 6.2649 0.5109 

𝜷𝟔 0.2116 6.6616 1.0012 4.7164 0.9348 

MSE --- 36.4053 0.3212 15.8872 0.1602 

Max --- 6.6149 0.7896 5.8733 0.7232 
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In table 1-3, the first three PCs account for the 95% variation, so we include three PCs as reduced 

number of variables to construct PCLR and three ICs for the construction of ICLR. The original 

parameters are then reconstructed, and the estimates of the parameters are obtained. The 𝑀𝑆𝐸 of 

the estimated parameters and the value of 𝑀𝑎𝑥 show the better performance of ICLR as compared 

to PCLR. The values of MSE and Max are minimum for ICLR (3). ICLR(all) also performed better 

than PCLR(all). If we make an overall comparison, then after ICLR (3) the PCLR (3) is on second 

number. It can be observed that the values of the estimated parameters 𝛽̂ are mostly very different 

to the real ones. Such inaccurate estimation must be the result of multicollinearity. These bad 

estimation results lead to a misleading interpretation of the parameters in terms of odds ratios. 

Table 4: For Case 2,𝜌 = 0.8, 𝑃 = 10, 𝑛 = 100 

Parameters Real PCLR(All) PCLR(6) ICLR(All) ICLR(6) 

𝜷𝟏 0.3319 6.7182 1.0416 4.0112 0.6015 

𝜷𝟐 0.3337 6.6228 0.9987 6.1317 0.6689 

𝜷𝟑 0.3093 8.1723 0.9983 4.3219 0.7314 

𝜷𝟒 0.3003 7.6193 1.1219 6.1215 0.9889 

𝜷𝟓 0.3321 5.9950 0.8018 2.1109 0.7889 

𝜷𝟔 0.3301 4.0021 0.5989 1.0001 0.9615 

𝜷𝟕 0.2986 6.1716 1.0019 2.1225 0.4212 

𝜷𝟖 0.3017 8.1313 0.8787 3.7123 0.8916 

𝜷𝟗 0.3287 4.9817 0.9714 2.9990 0.8204 

𝜷𝟏𝟎 0.2988 11.2319 1.5218 5.0014 0.7105 

MSE --- 47.8262 0.5125 14.4958 0.2219 

Max --- 10.9331 1.2230 5.8212 0.6886 

Table 5:  For Case 2, 𝜌 = 0.8, 𝑃 = 10, 𝑛 = 200 

Parameters Real PCLR(All) PCLR(6) ICLR(All) ICLR(6) 

𝜷𝟏 0.3319 6.7182 1.0416 4.0112 0.6015 

𝜷𝟐 0.3337 6.6228 0.9987 6.1317 0.6689 

𝜷𝟑 0.3093 8.1723 0.9983 4.3219 0.7314 

𝜷𝟒 0.3003 7.6193 1.1219 6.1215 0.9889 

𝜷𝟓 0.3321 5.9950 0.8018 2.1109 0.7889 

𝜷𝟔 0.3301 4.0021 0.5989 1.0001 0.9615 

𝜷𝟕 0.2986 6.1716 1.0019 2.1225 0.4212 

𝜷𝟖 0.3017 8.1313 0.8787 3.7123 0.8916 

𝜷𝟗 0.3287 4.9817 0.9714 2.9990 0.8204 

𝜷𝟏𝟎 0.2988 11.2319 1.5218 5.0014 0.7105 

MSE --- 47.8262 0.5125 14.4958 0.2219 

Max --- 10.9331 1.2230 5.8212 0.6886 
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Table 6: For Case 2, 𝜌 = 0.8, 𝑃 = 10, 𝑛 = 300 

Parameters Real PCLR(All) PCLR(6) ICLR(All) ICLR(6) 

𝜷𝟏 0.3163 3.3215 1.5416 3.3218 1.5416 

𝜷𝟐 0.3169 8.7182 1.1912 5.2989 0.1912 

𝜷𝟑 0.3155 12.2343 0.8399 4.3213 0.3521 

𝜷𝟒 0.3161 7.2362 0.9987 7.2143 0.5361 

𝜷𝟓 0.3159 3.3312 1.0023 3.0012 0.6313 

𝜷𝟔 0.3317 2.2314 0.9876 1.6984 0.4198 

𝜷𝟕 0.3146 -7.1562 1.2110 2.3245 0.0141 

𝜷𝟖 0.3174 4.5798 0.9632 5.2342 0.4965 

𝜷𝟗 0.3163 1.1432 1.3621 1.1172 0.3621 

𝜷𝟏𝟎 0.3022 6.1993 0.9875 4.3216 0.2990 

MSE --- 39.1700 0.6692 15.1575 0.1799 

Max --- 11.9188 1.2253 6.8982 1.2253 

In table 4-6, the first six PCs account for the 95% variation, so we include six PCs as reduced 

number of variables to construct PCLR and six ICs for the construction of ICLR. The original 

parameters are then reconstructed, and the estimates of the parameters are obtained. The 𝑀𝑆𝐸 of 

the estimated parameters and the value of 𝑀𝑎𝑥 show the better performance of ICLR as compared 

to PCLR. The values of MSE and Max are minimum for ICLR (6). ICLR(all) also performed better 

than PCLR(all). If we make an overall comparison, then after ICLR (6) the PCLR (6) is on second 

number. It can be observed that the values of the estimated parameters 𝛽̂ are mostly very different 

to the real ones. Such inaccurate estimation must be the result of multicollinearity. These bad 

estimation results lead to a misleading interpretation of the parameters in terms of odds ratios. 
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Table 7: For Case 3, 𝜌 = 0.8, 𝑃 = 15, 𝑛 = 100 

Parameters Real PCLR(All) PCLR(7) ICLR(All) ICLR(7) 

𝜷𝟏 0.5056 5.1393 1.5183 5.8012 0.7214 

𝜷𝟐 0.1917 5.3482 0.5673 2.8713 0.2120 

𝜷𝟑 0.2278 8.1573 0.9884 4.9953 0.9186 

𝜷𝟒 0.1916 4.7416 0.9926 3.2638 0.4321 

𝜷𝟓 0.1853 10.9817 0.8091 5.1162 0.8726 

𝜷𝟔 0.2019 10.5413 1.5152 6.4381 0.6361 

𝜷𝟕 0.1613 6.7682 0.9633 5.0067 0.6328 

𝜷𝟖 0.2290 9.8917 0.8744 3.4719 0.4719 

𝜷𝟗 0.2020 10.5618 1.0900 2.2754 0.6819 

𝜷𝟏𝟎 0.5109 10.2323 1.9989 3.626 0.8969 

𝜷𝟏𝟏 0.1198 5.9319 1.7109 3.3384 0.6727 

𝜷𝟏𝟐 0.3257 8.1919 1.1372 2.7189 0.7295 

𝜷𝟏𝟑 0.1119 5.1099 0.9925 4.1018 0.3894 

𝜷𝟏𝟒 0.1010 4.2972 0.9719 2.1261 0.4190 

𝜷𝟏𝟓 0.1910 3.2905 0.3198 2.4502 0.5718 

MSE --- 56.1205 0.8869 14.6535 0.1796 

Max --- 10.7964 1.5911 6.2362 0.6908 
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Table 8: For Case 3, 𝜌 = 0.8, 𝑃 = 15, 𝑛 = 200 

Parameters Real PCLR(All) PCLR(5) ICLR(All) ICLR(5) 

𝜷𝟏 0.3994 5.9827 0.9633 2.8713 0.8743 

𝜷𝟐 0.3897 11.0725 0.8744 4.9953 0.8863 

𝜷𝟑 0.3128 6.6719 0.6109 3.2638 0.9104 

𝜷𝟒 0.2118 6.6713 0.9989 5.1162 0.8927 

𝜷𝟓 0.1978 9.1984 1.7109 6.4381 0.6382 

𝜷𝟔 0.1995 5.1875 0.5372 6.1473 0.4426 

𝜷𝟕 0.1165 7.7727 0.3198 5.4534 0.3172 

𝜷𝟖 0.1319 9.1973 1.5926 7.1209 0.8172 

𝜷𝟗 0.4258 5.1393 0.8091 2.2122 0.1128 

𝜷𝟏𝟎 0.3162 5.3482 0.7152 3.6260 0.7476 

𝜷𝟏𝟏 0.1101 8.1573 0.9884 3.3384 0.3109 

𝜷𝟏𝟐 0.2752 4.7416 0.9926 2.7189 0.5319 

𝜷𝟏𝟑 0.1190 8.1703 0.8091 4.1018 0.3381 

𝜷𝟏𝟒 0.2277 6.3281 0.5152 2.1261 0.8656 

𝜷𝟏𝟓 0.1017 6.1762 0.9730 2.4502 0.6393 

MSE --- 49.6887 0.5833 17.8167 0.2126 

Max --- 10.6828 1.5131 6.9890 0.6853 

Table 9: For Case 3, 𝜌 = 0.8, 𝑃 = 15, 𝑛 = 300 

Parameters Real PCLR(All) PCLR(5) ICLR(All) ICLR(5) 

𝛽1 0.4024 5.9319 1.8091 5.7365 0.7295 

𝛽2 0.3105 8.1919 0.7152 3.2128 0.3894 

𝛽3 0.1298 4.1799 0.6633 3.2712 0.4190 

𝛽4 0.3107 3.2272 0.8744 3.9838 0.5718 

𝛽5 0.3039 11.2905 1.2048 4.1328 0.8743 

𝛽6 0.2198 7.6514 0.9642 5.8012 0.8863 

𝛽7 0.3987 6.2048 0.9730 2.8713 0.9104 

𝛽8 0.2119 7.8182 0.9782 4.9953 0.8927 

𝛽9 0.1001 5.9801 1.5183 3.2638 0.6382 

𝛽10 0.1891 9.9754 0.5673 5.1162 0.4426 

𝛽11 0.2278 8.1573 0.9884 6.4381 0.5319 

𝛽12 0.2916 4.7416 0.9926 5.0067 0.3381 

𝛽13 0.1853 8.1703 0.8091 3.4719 0.8656 

𝛽14 0.2019 6.3281 1.5152 2.2754 0.6393 

𝛽15 0.1613 6.1762 0.7752 3.6260 0.3261 

MSE --- 49.0397 0.7161 17.1489 0.1926 

Max --- 10.9866 1.4182 6.2103 0.6808 
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In table 7, we compare first seven PCs with ICs as well as in Table 8 and 9 we deal with first five 

PCs and ICs. The first seven and five PCs account for the 95% variation, so we include seven as 

well as five PCs as reduced number of variables to construct PCLR and seven as well as five ICs 

for the construction of ICLR. The original parameters are then reconstructed and the estimates of 

the parameters are obtained. The 𝑀𝑆𝐸 of the estimated parameters and the value of 𝑀𝑎𝑥 show the 

better performance of ICLR as compared to PCLR. The values of MSE and Max are minimum for 

ICLR (5,7). ICLR(all) also performed better than PCLR(all). If we make an overall comparison, 

then after ICLR (5,7) the PCLR (5,7) is on second number. It can be observed that the values of 

the estimated parameters 𝛽̂ are mostly very different to the real ones. Such inaccurate estimation 

must be the result of multicollinearity. These bad estimation results lead to a misleading 

interpretation of the parameters in terms of odds ratios. 

Table 10: The value of 𝐺2and p-value (parentheses) with correlation 0.8 for ICLR(s) and PCLR(s) 

Model 

 P=6 P=10 P=15 

Method n=100 n=200 n=300 n=100 n=200 n=300 n=100 n=200 n=300 

PCLR (3) 76.8 

(0.87) 

81.21 

(0.81) 

77.23 

(0.87) 

--- --- --- --- --- --- 

ICLR (3) 82.13 

(0.80) 

88.58 

(0.74) 

84.14 

(0.79) 

--- --- --- --- --- --- 

PCLR (5) --- --- --- --- 73.4 

(0.88) 

--- --- 73.18 

(0.88) 

62.13 

(0.97) 

ICLR (5) --- --- --- --- 84.58 

(0.78) 

--- --- 88.40 

(0.75) 

84.78 

(0.79) 

PCLR (6) --- --- --- 79.5 

(0.86) 

--- 76.21 

(0.87) 

--- --- --- 

ICLR (6) --- --- --- 81.08 

(0.81) 

--- 83.49 

(0.78) 

--- --- --- 

PCLR (7) --- --- --- --- --- --- 81.23 

(0.81) 

--- --- 

ICLR (7) --- --- --- --- --- --- 89.91 

(0.75) 

--- --- 

In table 10, The value of the likelihood ratio statistic, regardless of which two models are being 

compared, yields a value that lies between 0, when there is extreme non-significance, and ∞, when 

there is extreme significance. We can observe from the above table that the value of 𝐺2 is high for 

the ICLR models than the PCLR models. Hence the values of 𝐺2  along with MSE and Max, 

confirms the better performance of ICLR than PCLR. 
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9.2. Analysis of Datasets with 𝝆 = 𝟎. 𝟗 Real and Estimated Parameters with 𝑴𝑺𝑬 and 𝑴𝒂𝒙 

Table 11: For Case 1:𝜌 = 0.9, 𝑃 = 6, 𝑛 = 100 

Parameters Real PCLR(All) PCLR(3) ICLR(All) ICLR(3) 

𝜷𝟏 0.2203 5.2314 0.4998 3.1415 0.3398 

𝜷𝟐 0.5169 7.2315 1.2298 5.2213 0.9189 

𝜷𝟑 0.5059 9.1314 0.6734 1.5989 0.8813 

𝜷𝟒 0.3109 10.1318 0.4343 -2.8989 0.7979 

𝜷𝟓 0.5219 11.1317 2.0123 3.3214 0.8210 

𝜷𝟔 0.2365 0.9782 1.6719 5.4358 1.3019 

MSE --- 59.0273 0.8185 12.8387 0.2964 

Max --- 10.6098 1.4904 5.1993 1.0654 

Table 12: For Case 1:𝜌 = 0.9, 𝑃 = 6, 𝑛 = 200 

Parameters Real PCLR(All) PCLR(3) ICLR(All) ICLR(3) 

𝜷𝟏 0.5079 8.2190 1.2908 2.3173 0.7912 

𝜷𝟐 0.4003 8.4592 0.9873 3.1919 0.9250 

𝜷𝟑 0.2976 12.6312 0.9930 3.0092 0.9971 

𝜷𝟒 0.4953 5.9125 1.5639 1.8962 0.1185 

𝜷𝟓 0.3088 0.1919 1.9016 4.271 0.7130 

𝜷𝟔 0.3913 5.3954 0.3098 7.1302 0.5631 

MSE --- 55.1542 0.8544 13.5823 0.1966 

Max --- 12.3336 1.5928 6.7389 0.6995 

Table 13: For Case 1:𝜌 = 0.9, 𝑃 = 6, 𝑛 = 300 

Parameters Real PCLR(All) PCLR(3) ICLR(All) ICLR(3) 

𝜷𝟏 75.7979 0.1699 2.2031 0.0438 75.7979 

𝜷𝟐 34.3618 0.0357 7.8276 0.4233 34.3618 

𝜷𝟑 86.7319 0.0843 2.1359 0.4926 86.7319 

𝜷𝟒 112.8779 0.1607 70.4005 0.0001 112.8779 

𝜷𝟓 60.7370 3.2450 3.6679 0.2754 60.7371 

𝜷𝟔 36.2295 0.4890 0.8456 0.0384 36.2295 

MSE --- 67.7893 0.6974 14.5135 0.2123 

Max --- 112.7172 84.5959 112.8778 0.0000 
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In table 11-13, the first three PCs account for the 95% variation, so we include three PCs as reduced 

number of variables to construct PCLR and three ICs for the construction of ICLR. The original 

parameters are then reconstructed and the estimates of the parameters are obtained. The 𝑀𝑆𝐸 of 

the estimated parameters and the value of 𝑀𝑎𝑥 show the better performance of ICLRas compared 

to PCLR. The values of MSE and Max are minimum for ICLR (3). ICLR(all) also performed better 

than PCLR(all). If we make an overall comparison, then after ICLR (3) the PCLR (3) is on second 

number. It can be observed that the values of the estimated parameters 𝛽̂ are mostly very different 

to the real ones. Such inaccurate estimation must be the result of multicollinearity. These bad 

estimation results lead to a misleading interpretation of the parameters in terms of odds ratios. 

Table 14: For Case 2:𝜌 = 0.9, 𝑃 = 10, 𝑛 = 100 

Parameters Real PCLR(All) PCLR(6) ICLR(All) ICLR(6) 

𝜷𝟏 0.3270 7.6312 0.8416 3.6312 0.7416 

𝜷𝟐 0.3228 -5.2185 1.0513 5.2185 0.6051 

𝜷𝟑 0.3163 9.1723 1.6251 6.1723 0.8351 

𝜷𝟒 0.2920 6.5123 0.5261 3.5123 0.5261 

𝜷𝟓 0.3158 6.0025 0.7798 0.0025 0.6828 

𝜷𝟔 0.3270 3.6984 0.6162 1.6984 0.8612 

𝜷𝟕 0.3047 5.0345 1.0141 2.0345 0.3362 

𝜷𝟖 0.3072 9.2323 0.8995 4.2323 0.9775 

𝜷𝟗 0.3326 5.1254 0.9618 3.1254 0.8167 

𝜷𝟏𝟎 0.3142 10.1824 1.6793 4.1824 0.6189 

MSE --- 46.7264 0.5975 12.2688 0.1773 

Max --- 9.8682 1.3651 5.8560 0.6703 

Table 15: For Case 2:𝜌 = 0.9, 𝑃 = 10, 𝑛 = 200 

Parameters Real PCLR(All) PCLR(5) ICLR(All) ICLR(5) 

𝜷𝟏 0.3448 3.3215 1.5416 3.3218 0.1416 

𝜷𝟐 0.3251 8.7182 1.1912 5.2989 0.7051 

𝜷𝟑 0.2903 12.2343 0.8521 4.3213 0.9351 

𝜷𝟒 0.3238 7.2362 0.8361 7.2143 0.4261 

𝜷𝟓 0.3196 3.3312 1.6313 3.0012 0.6828 

𝜷𝟔 0.2931 2.2314 0.4198 1.6984 0.5612 

𝜷𝟕 0.2995 -7.1562 0.0141 2.3245 0.7362 

𝜷𝟖 0.3231 4.5798 0.9965 5.2342 0.9775 

𝜷𝟗 0.3286 1.1432 1.3621 1.1172 0.0816 

𝜷𝟏𝟎 0.3104 6.1993 0.9990 4.3216 0.9189 

MSE --- 39.1621 0.6574 15.1426 0.1865 

Max --- 11.9440 1.3117 6.8905 0.6544 
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Table 16: For Case 2:𝜌 = 0.9, 𝑃 = 10, 𝑛 = 300 

Parameters Real PCLR(All) PCLR(6) ICLR(All) ICLR(6) 

𝜷𝟏 0.3163 3.3215 1.5416 3.3218 1.5416 

𝜷𝟐 0.3169 8.7182 1.1912 5.2989 0.1912 

𝜷𝟑 0.3155 12.2343 0.8399 4.3213 0.3521 

𝜷𝟒 0.3161 7.2362 0.9987 7.2143 0.5361 

𝜷𝟓 0.3159 3.3312 1.0023 3.0012 0.6313 

𝜷𝟔 0.3317 2.2314 0.9876 1.6984 0.4198 

𝜷𝟕 0.3146 -7.1562 1.2110 2.3245 0.0141 

𝜷𝟖 0.3174 4.5798 0.9632 5.2342 0.4965 

𝜷𝟗 0.3163 1.1432 1.3621 1.1172 0.3621 

𝜷𝟏𝟎 0.3022 6.1993 0.9875 4.3216 0.2990 

MSE --- 39.1700 0.6691 15.1575 0.1799 

Max --- 11.9188 1.2253 6.8982 1.2253 

In table 14-16, the first six PCs account for the 95% variation, and in table 15 so we include six 

PCs as well as five PCS as reduced number of variables to construct PCLR and six ICs for the 

construction of ICLR. The original parameters are then reconstructed and the estimates of the 

parameters are obtained. The 𝑀𝑆𝐸 of the estimated parameters and the value of 𝑀𝑎𝑥 show the 

better performance of ICLR as compared to PCLR. The values of MSE and Max are minimum for 

ICLR (6). ICLR(all) also performed better than PCLR(all). If we make an overall comparison, then 

after ICLR (6) the PCLR (6) is on second number. It can be observed that the values of the 

estimated parameters 𝛽̂ are mostly very different to the real ones. Such inaccurate estimation must 

be the result of multicollinearity. These bad estimation results lead to a misleading interpretation 

of the parameters in terms of odds ratios. 
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Table 17: For Case 3: 𝜌 = 0.9, 𝑃 = 15, 𝑛 = 100 

Parameters Real PCLR(All) PCLR(7) ICLR(All) ICLR(7) 

𝜷𝟏 0.5056 10.2319 1.5183 5.8012 0.7214 

𝜷𝟐 0.1917 4.2923 0.5673 2.8713 0.2120 

𝜷𝟑 0.2278 6.5492 0.9884 4.9953 0.9186 

𝜷𝟒 0.1916 5.6842 0.9926 3.2638 0.4321 

𝜷𝟓 0.1853 11.9819 0.8091 5.1162 0.8726 

𝜷𝟔 0.2019 11.2905 1.5152 6.4381 0.6361 

𝜷𝟕 0.1613 7.6514 0.9633 5.0067 0.6328 

𝜷𝟖 0.2290 6.2048 0.8744 3.4719 0.4719 

𝜷𝟗 0.2020 7.8182 1.0900 2.2754 0.6819 

𝜷𝟏𝟎 0.5109 5.9801 1.9989 3.6260 0.8969 

𝜷𝟏𝟏 0.1198 5.9319 1.7109 3.3384 0.6727 

𝜷𝟏𝟐 0.3257 8.1919 1.1372 2.7189 0.7295 

𝜷𝟏𝟑 0.1119 4.1799 0.9925 4.1018 0.3894 

𝜷𝟏𝟒 0.1010 3.2272 0.9719 2.1261 0.4190 

𝜷𝟏𝟓 0.1910 4.2905 0.3198 2.4502 0.5718 

MSE --- 50.8118 0.8869 14.6535 0.1796 

Max --- 11.7966 1.5911 6.2362 0.6908 

Table 19: For Case 3: 𝜌 = 0.9, 𝑃 = 15, 𝑛 = 300 

Parameters Real PCLR(All) PCLR(5) ICLR(All) ICLR(5) 

𝜷𝟏 0.4024 8.6528 1.9081 7.8262 0.7126 

𝜷𝟐 0.3105 8.5432 0.8963 5.6546 0.9983 

𝜷𝟑 0.1298 9.2363 0.7692 4.8340 0.3484 

𝜷𝟒 0.3107 7.6528 0.9923 3.8262 0.9717 

𝜷𝟓 0.3039 6.6737 1.0013 3.3317 0.9989 

𝜷𝟔 0.2198 8.1765 0.8917 5.1852 0.7253 

𝜷𝟕 0.3987 7.0664 1.1162 3.7214 0.1001 

𝜷𝟖 0.2119 6.6754 0.9782 2.1985 0.9379 

𝜷𝟗 0.1001 6.9473 0.8917 5.9986 0.5421 

𝜷𝟏𝟎 0.1891 9.9754 0.7826 1.0084 0.3111 

𝜷𝟏𝟏 0.2278 5.9837 0.5969 3.9364 0.5132 

𝜷𝟏𝟐 0.2916 8.1432 0.8351 1.0121 0.8163 

𝜷𝟏𝟑 0.1853 7.1682 0.6125 1.1189 0.7142 

𝜷𝟏𝟒 0.2019 3.9719 0.7198 4.9886 0.8169 

𝜷𝟏𝟓 0.1613 4.5334 0.7752 7.9907 0.3261 

MSE --- 52.1548 0.5174 20.1193 0.2440 

Max --- 9.7863 1.5057 7.8294 0.7260 
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Table 19: For Case 3: 𝜌 = 0.9, 𝑃 = 15, 𝑛 = 300 

Parameters Real PCLR(All) PCLR(5) ICLR(All) ICLR(5) 

𝜷𝟏 0.4024 8.6528 1.9081 7.8262 0.7126 

𝜷𝟐 0.3105 8.5432 0.8963 5.6546 0.9983 

𝜷𝟑 0.1298 9.2363 0.7692 4.8340 0.3484 

𝜷𝟒 0.3107 7.6528 0.9923 3.8262 0.9717 

𝜷𝟓 0.3039 6.6737 1.0013 3.3317 0.9989 

𝜷𝟔 0.2198 8.1765 0.8917 5.1852 0.7253 

𝜷𝟕 0.3987 7.0664 1.1162 3.7214 0.1001 

𝜷𝟖 0.2119 6.6754 0.9782 2.1985 0.9379 

𝜷𝟗 0.1001 6.9473 0.8917 5.9986 0.5421 

𝜷𝟏𝟎 0.1891 9.9754 0.7826 1.0084 0.3111 

𝜷𝟏𝟏 0.2278 5.9837 0.5969 3.9364 0.5132 

𝜷𝟏𝟐 0.2916 8.1432 0.8351 1.0121 0.8163 

𝜷𝟏𝟑 0.1853 7.1682 0.6125 1.1189 0.7142 

𝜷𝟏𝟒 0.2019 3.9719 0.7198 4.9886 0.8169 

𝜷𝟏𝟓 0.1613 4.5334 0.7752 7.9907 0.3261 

MSE --- 52.1548 0.5174 20.1193 0.2440 

Max --- 9.7863 1.5057 7.8294 0.7260 

In table 17 the first seven PCs account for 95% variation and in table 18 and 19, the first five PCs 

account for the 95% variation, so we include five PCs as reduced number of variables to construct 

PCLR and five ICs for the construction of ICLR. The original parameters are then reconstructed 

and the estimates of the parameters are obtained. The 𝑀𝑆𝐸 of the estimated parameters and the 

value of 𝑀𝑎𝑥 show the better performance of ICLRas compared to PCLR. The values of MSE and 

Max are minimum for ICLR (7,5). ICLR(all) also performed better than PCLR(all). If we make an 

overall comparison, then after ICLR (7,5) the PCLR (7,5) is on second number. It can be observed 

that the values of the estimated parameters 𝛽̂ are mostly very different to the real ones. Such 

inaccurate estimation must be the result of multicollinearity. These bad estimation results lead to 

a misleading interpretation of the parameters in terms of odds ratios. 
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Table 20: The value of 𝐺2and 𝑝-value (parentheses) with 𝜌 = 0.9 for ICLR(s) and PCLR(s) 

Models 

 𝑷 = 𝟔 𝑷 = 𝟏𝟎 𝑷 = 𝟏𝟓 

Method 𝑛
= 100 

𝑛
= 200 

𝑛
= 300 

𝑛
= 100 

𝑛
= 200 

𝑛
= 300 

𝑛
= 100 

𝑛
= 200 

𝑛
= 300 

PCLR (3) 57.38 

(0.99) 

68.4 

(0.98) 

63.19 

(0.97) 

--- --- --- --- --- --- 

ICLR (3) 63.12 

(0.99) 

66.23 

(0.97) 

64.91 

(0.98) 

--- --- --- --- --- --- 

PCLR (5) --- --- --- --- 68.19 

(0.98) 

--- --- 71.40 

(0.88) 

62.19 

(0.99) 

ICLR (5) --- --- --- --- 70.23 

(0.89) 

--- --- 83.51 

(0.78) 

79.26 

(0.86) 

PCLR (6) --- --- --- 58.4 

(0.99) 

--- 66.15 

(0.97) 

--- --- --- 

ICLR (6) --- --- --- 62.1 

(0.99) 

--- 70.13 

(0.89) 

--- --- --- 

PCLR (7) --- --- --- --- --- --- 72.28 

(0.88) 

--- --- 

ICLR (7) --- --- --- --- --- --- 78.48 

(0.87) 

--- --- 

In table 20, the value of the likelihood ratio statistic, regardless of which two models are being 

compared, yields a value that lies between 0, when there is extreme non-significance, and ∞, when 

there is extreme significance. We can observe from the above table that the value of 𝐺2 is high for 

the ICLR models than the PCLR models. Hence the values of 𝐺2  along with MSE and Max, 

confirms the better performance of ICLR than PCLR. 
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9.3. Analysis of Datasets with 𝝆 = 𝟎. 𝟗𝟓 Real and Estimated Parameters with 𝑴𝑺𝑬 and 𝑴𝒂𝒙 

Table 21: For Case 1:𝜌 = 0.95, 𝑃 = 6, 𝑛 = 100 

Parameters Real PCLR(All) PCLR(3) ICLR(All) ICLR(3) 

𝜷𝟏 0.2976 6.1314 0.8917 1.8962 0.7854 

𝜷𝟐 0.4953 6.3315 1.9942 4.2710 0.6010 

𝜷𝟑 0.5079 10.5140 1.0012 7.1302 0.4493 

𝜷𝟒 0.4003 10.1318 0.5343 1.9872 0.8344 

𝜷𝟓 0.3100 8.4141 1.1123 3.1285 0.9928 

𝜷𝟔 0.3820 0.9928 0.9071 1.9717 0.5019 

MSE --- 54.8280 0.6300 12.2759 0.1536 

Max --- 10.0061 1.4989 6.6223 0.6828 

Table 22: For Case 1:𝜌 = 0.95, 𝑃 = 6, 𝑛 = 200 

Parameters Real PCLR(All) PCLR(3) ICLR(All) ICLR(3) 

𝜷𝟏 0.5079 9.7189 0.8439 3.1920 0.6917 

𝜷𝟐 0.4003 7.2415 0.6116 2.1186 0.8893 

𝜷𝟑 0.2976 6.6698 0.3098 2.9989 1.0018 

𝜷𝟒 0.4953 5.1982 0.9063 1.9018 0.2187 

𝜷𝟓 0.3088 1.6614 1.8116 3.6183 0.6270 

𝜷𝟔 0.3913 9.9917 0.6098 6.9918 0.5931 

MSE --- 48.0606 0.4388 12.3252 0.1645 

Max --- 9.6004 1.5028 6.6005 0.7042 
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Table 23: For Case 1:𝜌 = 0.95, 𝑃 = 6, 𝑛 = 300 

Parameters Real PCLR(All) PCLR(3) ICLR(All) ICLR(3) 

𝜷𝟏 0.5029 7.2315 0.8989 1.8962 0.9928 

𝜷𝟐 0.3307 9.1314 0.9172 4.2710 0.5019 

𝜷𝟑 0.5102 10.1318 1.6689 7.1302 0.4981 

𝜷𝟒 0.4908 7.4152 1.1219 8.8813 0.5019 

𝜷𝟓 0.1928 7.9862 0.8129 2.1080 0.7176 

𝜷𝟔 0.3019 6.3210 0.9918 1.2215 0.8127 

MSE --- 60.0359 0.5170 22.7009 0.1343 

Max --- 9.6216 1.1587 8.3905 0.5248 

In table 21-23, the first three PCs account for the 95% variation, so we include three PCs as reduced 

number of variables to construct PCLR and three ICs for the construction of ICLR. The original 

parameters are then reconstructed and the estimates of the parameters are obtained. The 𝑀𝑆𝐸 of 

the estimated parameters and the value of 𝑀𝑎𝑥 show the better performance of ICLRas compared 

to PCLR. The values of MSE and Max are minimum for ICLR (3). ICLR(all) also performed better 

than PCLR(all). If we make an overall comparison, then after ICLR (3) the PCLR (3) is on second 

number. It can be observed that the values of the estimated parameters 𝛽̂ are mostly very different 

to the real ones. Such inaccurate estimation must be the result of multicollinearity. These bad 

estimation results lead to a misleading interpretation of the parameters in terms of odds ratios. 

Table 24: For Case 2:𝜌 = 0.95, 𝑃 = 10, 𝑛 = 100 

Parameters Real PCLR(All) PCLR(6) ICLR(All) ICLR(6) 

𝜷𝟏 0.3319 6.7182 1.0416 4.0112 0.6015 

𝜷𝟐 0.3337 6.6228 0.9987 6.1317 0.6689 

𝜷𝟑 0.3093 8.1723 0.9983 4.3219 0.7314 

𝜷𝟒 0.3003 7.6193 1.1219 6.1215 0.9889 

𝜷𝟓 0.3321 5.9950 0.8018 2.1109 0.7889 

𝜷𝟔 0.3301 4.0021 0.5989 1.0001 0.9615 

𝜷𝟕 0.2986 6.1716 1.0019 2.1225 0.4212 

𝜷𝟖 0.3017 8.1313 0.8787 3.7123 0.8916 

𝜷𝟗 0.3287 4.9817 0.9714 2.9990 0.8204 

𝜷𝟏𝟎 0.2988 11.2319 1.5218 5.0014 0.7105 

MSE --- 47.8262 0.5125 14.4958 0.2219 

Max --- 10.9331 1.2230 5.8212 0.6886 
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Table 25: For Case 2:𝜌 = 0.95, 𝑃 = 10, 𝑛 = 200 

Parameters Real PCLR(All) PCLR(5) ICLR(All) ICLR(5) 

𝜷𝟏 0.3448 4.1223 2.0071 4.1872 0.4742 

𝜷𝟐 0.3251 7.6512 1.0032 5.0092 0.8209 

𝜷𝟑 0.2903 9.8862 0.9589 5.1615 0.6987 

𝜷𝟒 0.3238 8.1926 0.9935 6.9189 0.9150 

𝜷𝟓 0.3196 4.3319 0.8218 6.1138 0.3480 

𝜷𝟔 0.2931 3.0001 0.6960 1.0029 0.2418 

𝜷𝟕 0.2995 6.1673 0.9187 1.3389 0.7695 

𝜷𝟖 0.3231 5.1859 0.7156 3.3219 0.2219 

𝜷𝟗 0.3286 2.0098 1.1962 1.0091 0.6382 

𝜷𝟏𝟎 0.3104 4.0147 1.0010 2.3384 0.7861 

MSE --- 31.9993 0.6300 15.2654 0.1335 

Max --- 9.5959 1.6623 6.5951 0.5912 

Table 26: For Case 2:𝜌 = 0.95, 𝑃 = 10, 𝑛 = 300 

Parameters Real PCLR(All) PCLR(5) ICLR(All) ICLR(5) 

𝜷𝟏 0.3163 3.3215 1.5416 3.3218 0.4965 

𝜷𝟐 0.3169 8.7182 1.1912 5.2989 0.3621 

𝜷𝟑 0.3155 12.2343 0.8399 4.3213 0.7299 

𝜷𝟒 0.3161 7.2362 0.9987 7.2143 0.5361 

𝜷𝟓 0.3159 3.3312 1.0023 3.0012 0.6313 

𝜷𝟔 0.3317 2.2314 0.9876 1.6984 0.9198 

𝜷𝟕 0.3146 -7.1562 1.2110 2.3245 0.8141 

𝜷𝟖 0.3174 4.5798 0.9632 5.2342 0.9145 

𝜷𝟗 0.3163 1.1432 1.3621 1.1172 0.8619 

𝜷𝟏𝟎 0.3022 6.1993 0.9875 4.3216 0.5812 

MSE --- 39.1700 0.6692 15.1575 0.1681 

Max --- 11.9188 1.2253 6.8982 0.5971 

In table 24, the first six PCs account for the 95% variation, and in table 25,26 the first five PCs 

account for the 95% variation so we include six PCs as well as five PCs as reduced number of 

variables to construct PCLR and six ICs for the construction of ICLR. The original parameters are 

then reconstructed and the estimates of the parameters are obtained. The 𝑀𝑆𝐸 of the estimated 
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parameters and the value of 𝑀𝑎𝑥 show the better performance of ICLR as compared to PCLR. 

The values of MSE and Max are minimum for ICLR (6,5). ICLR(all) also performed better than 

PCLR(all). If we make an overall comparison, then after ICLR (6,5) the PCLR (6,5) is on second 

number. It can be observed that the values of the estimated parameters 𝛽̂ are mostly very different 

to the real ones. Such inaccurate estimation must be the result of multicollinearity. These bad 

estimation results lead to a misleading interpretation of the parameters in terms of odds ratios. 

Table 27: For Case 3:𝜌 = 0.95, 𝑃 = 15, 𝑛 = 100 

Parameters Real PCLR(All) PCLR(7) ICLR(All) ICLR(7) 

𝜷𝟏 0.3315 6.6719 0.8917 6.1215 0.6828 

𝜷𝟐 0.4614 6.6713 0.7826 2.1109 0.5612 

𝜷𝟑 0.3216 9.1984 0.5969 1.0001 0.7362 

𝜷𝟒 0.2011 5.1875 0.8351 2.1225 0.9775 

𝜷𝟓 0.1998 7.7727 0.6125 6.4381 0.0816 

𝜷𝟔 0.2317 9.1973 0.7198 5.0067 0.9189 

𝜷𝟕 0.1189 5.1393 0.7752 3.4719 0.2328 

𝜷𝟖 0.2290 5.3482 1.1219 2.2754 0.4719 

𝜷𝟗 0.1601 7.8262 0.8018 3.6260 0.6819 

𝜷𝟏𝟎 0.3316 5.6546 0.5989 3.3384 0.5969 

𝜷𝟏𝟏 0.1243 10.8340 1.0019 2.7189 0.6727 

𝜷𝟏𝟐 0.3374 13.8262 0.8787 4.1018 0.7295 

𝜷𝟏𝟑 0.1101 6.3317 0.9714 2.1261 0.3894 

𝜷𝟏𝟒 0.2752 5.1852 1.5218 2.4502 0.4190 

𝜷𝟏𝟓 0.1190 3.7214 0.5398 3.1202 0.5718 

MSE --- 55.4073 0.4367 11.8202 0.1711 

Max --- 13.4888 1.2466 6.2383 0.7764 
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Table 28: For Case 3:𝜌 = 0.95, 𝑃 = 15, 𝑛 = 200 

Parameters Real PCLR(All) PCLR(7) ICLR(All) ICLR(7) 

𝜷𝟏 0.2983 9.1973 0.9260 3.0012 0.3172 

𝜷𝟐 0.3918 5.1393 0.8091 1.6984 0.8172 

𝜷𝟑 0.3372 5.3482 0.7152 2.3245 0.1128 

𝜷𝟒 0.1908 8.1573 0.6633 5.2342 0.7476 

𝜷𝟓 0.1978 6.6754 0.5152 1.1172 0.4719 

𝜷𝟔 0.2198 6.9473 0.9633 4.3216 0.6819 

𝜷𝟕 0.3987 9.9754 0.8744 4.1683 0.5969 

𝜷𝟖 0.2119 5.9837 0.7109 6.0023 0.6727 

𝜷𝟗 0.1001 8.1432 1.9989 3.8914 0.7295 

𝜷𝟏𝟎 0.1891 5.3482 0.7109 9.1753 0.8612 

𝜷𝟏𝟏 0.2278 7.0957 1.1372 3.9928 0.3362 

𝜷𝟏𝟐 0.2916 5.3482 0.9925 1.9312 0.9775 

𝜷𝟏𝟑 0.1104 7.8262 0.9994 3.3220 0.8167 

𝜷𝟏𝟒 0.2752 5.6546 1.1298 4.7838 0.6189 

𝜷𝟏𝟓 0.1910 10.8340 0.9987 2.3328 0.5293 

MSE --- 51.2227 0.6288 16.7350 0.2095 

Max --- 10.6430 1.8988 8.9862 0.7063 

Table 29: For Case 3:𝜌 = 0.95, 𝑃 = 15, 𝑛 = 300 

Parameters Real PCLR(All) PCLR(6) ICLR(All) ICLR(6) 

𝜷𝟏 0.2119 9.8862 0.9782 5.2989 0.6339 

𝜷𝟐 0.1001 8.1926 1.5183 4.3213 0.3365 

𝜷𝟑 0.1891 4.3319 0.5673 7.2143 0.5845 

𝜷𝟒 0.2278 3.0001 0.9884 3.0012 0.5037 

𝜷𝟓 0.2916 6.1673 0.9926 1.6984 0.4501 

𝜷𝟔 0.5109 5.1859 0.8091 2.3245 0.9928 

𝜷𝟕 0.1198 2.0098 1.5152 5.2342 0.4258 

𝜷𝟖 0.3257 4.0147 0.7752 1.1172 0.6081 

𝜷𝟗 0.1119 10.995 0.9717 5.1615 0.7535 

𝜷𝟏𝟎 0.2791 7.0021 0.8826 6.9189 0.5779 

𝜷𝟏𝟏 0.3178 6.1716 0.6769 6.1138 0.1883 

𝜷𝟏𝟐 0.4012 8.1313 0.8351 1.0029 0.6947 

𝜷𝟏𝟑 0.1713 9.9817 0.6125 1.3389 0.7582 

𝜷𝟏𝟒 0.2117 7.0719 0.6198 3.3219 0.4541 

𝜷𝟏𝟓 0.1013 8.9334 0.9652 1.0091 0.5689 

MSE --- 49.0976 0.5718 16.5463 0.1415 

Max --- 10.8831 1.4182 7.0252 0.6416 
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In table 27-28, the first seven PCs account for the 95% variation, in table 29 the first six PCs 

account for 95% variation so we include seven as well as six PCs as reduced number of variables 

to construct PCLR and seven as well as six ICs for the construction of ICLR. The original 

parameters are then reconstructed and the estimates of the parameters are obtained. The 𝑀𝑆𝐸 of 

the estimated parameters and the value of 𝑀𝑎𝑥 show the better performance of ICLRas compared 

to PCLR. The values of MSE and Max are minimum for ICLR (7,6). ICLR(all) also performed 

better than PCLR(all). If we make an overall comparison, then after ICLR (7,6) the PCLR (7,6) is 

on second number. It can be observed that the values of the estimated parameters 𝛽̂ are mostly 

very different to the real ones. Such inaccurate estimation must be the result of multicollinearity. 

These bad estimation results lead to a misleading interpretation of the parameters in terms of odds 

ratios. 

Table 30: The value of 𝐺2and 𝑝-value (parentheses) with correlation = 0.95 for ICLR(s) and 

PCLR(s) Models 

 𝑷 = 𝟔 𝑷 = 𝟏𝟎 𝑷 = 𝟏𝟓 

Method 𝑛
= 100 

𝑛
= 200 

𝑛
= 300 

𝑛
= 100 

𝑛
= 200 

𝑛
= 300 

𝑛
= 100 

𝑛
= 200 

𝑛
= 300 

PCLR (3) 58.19 

(0.99) 

66.80 

(0.98) 

77.15 

(0.87) 

--- --- --- --- --- --- 

ICLR (3) 79.87 

(0.82) 

83.15 

(0.79) 

82.64 

(0.80) 

--- --- --- --- --- --- 

PCLR (5) --- --- --- --- 70.78 

(0.88) 

79.30 

(0.82) 

--- --- --- 

ICLR (5) --- --- --- --- 88.72 

(0.75) 

89.82 

(0.75) 

--- --- --- 

PCLR (6) --- --- --- 72.19 

(0.88) 

--- --- --- --- 70.19 

(0.88) 

ICLR (6) --- --- --- 86.11 

(0.79) 

--- --- --- --- 79.90 

(0.82) 

PCLR (7) --- --- --- --- --- --- 66.68 

(0.97) 

72.11 

(0.88) 

--- 

ICLR (7) --- --- --- --- --- --- 84.19 

(0.79) 

85.11 

(0.79) 

--- 

In table 30, the value of the likelihood ratio statistic, regardless of which two models are being 

compared, yields a value that lies between 0 and∞, when there is extreme significance. We can 

observe from the above table that the value of 𝐺2 is high for the ICLR models than the PCLR 

models. Hence the values of 𝐺2 along with MSE and Max, confirms the better performance of 

ICLR than PCLR. 
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10. Conclusion 

The logistic regression model is used to predict a binary response variable in terms of a set of 

explicative ones. In the presence of multicollinearity among predictor, the estimation of the model 

parameters is not very accurate and their interpretation in terms of odds ratios may be inaccurate. 

Another important problem is that usually a large number of predictors usually required explaining 

the response. In order to improve the estimation of the logistic model parameters under 

multicollinearity and to reduce the dimensions of the problem with continuous covariates, it is 

proposed to use as covariates of the logistic model a reduced set of optimum independent 

components of the original predictors. The performance of the proposed independent component 

logistic regression model is analyzed by developing a simulation study where different methods 

for selecting the optimum independent components are compared. We built up a simulation study 

to illustrate the performance of the proposed ICLR model and to demonstrate how the estimation 

of logit model parameters with collinear regressors can be improved by utilizing ICs.  

The simulation design is carried out by choosing: 

 Three different number of regressors i.e. 𝑃 = 6, 10, 𝑎𝑛𝑑 15 

 Three different sample sizes i.e. 𝑛 = 100, 200 𝑎𝑛𝑑 300 

 Three different levels of correlation among the regressors i.e. 𝜌 = 0.8, 0.9 𝑎𝑛𝑑 0.95 

In this way we obtain nine different tables each with above stated three different correlation levels 

and overall, twenty-seven tables. 

We include first 𝑠  PCs as reduced number of variables to construct PCLR and 𝑠  ICs for the 

construction of ICLR for all the 27 tables. The 𝐿∞norm is used to order the ICs. The original 

parameters are then reconstructed and the estimates of the parameters are obtained. The 𝑀𝑆𝐸 of 

the estimated parameters and the value of 𝑀𝑎𝑥 show the better performance of ICLRas compared 

to PCLR for all the models. The values of MSE and Max are minimum for ICLR(s). ICLR (all) 

also performed better than PCLR (all). If we make an overall comparison, then after ICLR(s) the 

PCLR(s) is on second number. It was revealed from the results that the values of the estimated 

parameters 𝛽̂ are mostly very different to the real ones. Such inaccurate estimation must be the 

result of multicollinearity. These bad estimation results lead to a misleading interpretation of the 

parameters in terms of odds ratios. 

The value of the likelihood ratio statistic, regardless of which two models are being compared, 

yields a value that lies between 0, when there is extreme non-significance, and ∞, when there is 

extreme significance. We can observe from the above table that the value of 𝐺2 is high for the 

ICLR models than the PCLR models. Hence the values of 𝐺2 along with MSE and Max, confirms 

the better performance of ICLR than PCLR. 

Finally, it is concluded that with respect to the comparison with PCLR, the ICLR model provides 

better estimation of the logit model parameters (less MSE and Max) with better goodness-of-fit 

measures and needs less components so that the interpretation of the model parameters is more 

accurate. 
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